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Introduction



PMFs
Consider a sequence Y1, . . . ,Yn of random variables with the joint PMF

PY1,...,Yn(y1, . . . , yn), y1 ∈ Y1, . . . , yn ∈ Yn.

In a typical scenario of interest, we might have observed

Y1 = y1, . . . ,Yn−1 = yn−1

and would like to estimate Yn based on these observations.

Usually, PY1,...,Yn(y1, . . . , yn) does not have a “nice” factorization.

However, very often it is possible to find a function p(x , y) such that

1. p(x , y) ∈ R≥0 for all x , y ;

2.
∑

x,y p(x , y) = 1;

3.
∑

x p(x , y) = PY (y) for all y ;

4. p(x , y) has a “nice” factorization.

Note that p(x , y) represents a joint PMF over x and y .



PMFs

Example (A Hidden Markov Chain)

PY1,...,Y4

Y1 Y2 Y3 Y4

PY1,...,Y4

PX1

X1 =

PY1|X1

Y1

PX2|X1
X2 =

PY2|X2

Y2

PX3|X2
X3 =

PY3|X3

Y3

PX4|X3
X4 =

PY4|X4

Y4

After applying a closing-the-box (CTB) operation to the above factor
graph, i.e., summing over the variables associated with the internal
edges, we obtain PY1,...,Y4 .



QMFs

Consider again a sequence Y1, . . . ,Yn of random variables with the joint
PMF

PY1,...,Yn(y1, . . . , yn), y1 ∈ Y1, . . . , yn ∈ Yn.

However, now we assume that these random variables represent the
measurements obtained by running some quantum-mechanical
experiment.

Again, a typical scenario of interest is that we would like to estimate Yn

based on the observations

Y1 = y1, . . . ,Yn−1 = yn−1.



QMFs
In general, the PMF PY (y) does not have a “nice” factorization.

However, frequently it is possible to introduce suitable auxiliary variables
x1, . . . xm, x

′
1, . . . , x

′
m such that there is a function q(x , x ′, y) satisfying

1. q(x , x ′, y) ∈ C for all x , x ′, y ;

2.
∑

x,x′,y q(x , x
′, y) = 1;

3. q(x , x ′, y) is a positive semi-definite (PSD) kernel in (x , x ′) for
every y ;

4.
∑

x,x′ q(x , x ′, y) = PY (y);

5. q(x , x ′, y) has a “nice” factorization.

The function q is called a quantum mass function (QMF)
in [Loeliger and Vontobel, 2017].



QMFs

Example
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After applying a CTB operation to the above factor graph, i.e., summing
over the variables associated with the internal edges, we obtain PY1,...,Y4 .



SQMFs

In [Loeliger and Vontobel, 2020], the authors also introduced
simple quantum mass functions (SQMFs).

An SQMF q(x , x ′) satisfies

1. q(x , x ′) ∈ C for all x , x ′;

2.
∑

x,x′ q(x , x ′) = 1;

3. q(x , x ′) is a PSD kernel in (x , x ′).

Remark

Observations y in QMFs do not appear explicitly in SQMFs anymore.
However, as we will see later, observations y emerge from SQMFs.



SQMFs
Definition

For x = (x1, . . . , xm), let I ⊆ {1, . . . ,m} and let Ic be its complement.

The variables xI are called jointly classicable if the marginalized SQMF

qI(xI , x ′
I) :=

∑
xIc ,x′

Ic

q(x , x ′)

is zero for all (xI , x ′
I) satisfying xI ̸= x ′

I .

Definition

If the variables xI are jointly classicable then

p(xI) := qI(xI , xI), xI ∈ XI ,

represents a joint PMF over xI .

Definition

Let K be a collection of subsets I of {1, . . . ,m} such that xI is
classicable.



SQMFs vs. QMFs vs. PMFs

Remark

▶ By defining p(xI) := qI(xI , xI), we can see that the observations y
that were omitted when going from QMFs to SQMFs can “emerge”
again.

▶ Typically, the set of marginals {p(xI)}I∈K is “incompatible”, i.e.,
there is no PMF p(x) such that pI(xI) is a marginal of p(x) for all
I ∈ K.

▶ Note that there is a strong connection of SQMFs to the so-called
decoherence functional [Gell-Mann and Hartle, 1989,
Dowker and Halliwell, 1992], and via this also to the
consistent-histories approach to quantum mechanics [Griffiths, 2002].
However, the starting point of our investigations is quite different.



SQMF for Hardy’s Paradox

Example

Consider the following quantum factor graph (Q-FG), where

Xi = X ′
i := {0, 1}, i ∈ {1, . . . , 4}, U1 = U2 :=

√
2

2

(
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1 −1

)
,

ψ :=
(
1 1 1 0

)T
, ρ := ψ ·ψH.
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SQMF for Hardy’s Paradox
The following matrix shows the components of the SQMF q(x , x ′),
where both the row index (x1, . . . , x4) and column index (x ′1, . . . , x

′
4)

range over (0, 0, 0, 0), (0, 0, 0, 1), . . . , (1, 1, 1, 1).

α1 0 0 0 α1 0 0 0 α1 0 0 0 0 0 0 0
0 α1 0 0 0 β1 0 0 0 α1 0 0 0 0 0 0
0 0 α1 0 0 0 α1 0 0 0 β1 0 0 0 0 0
0 0 0 α1 0 0 0 β1 0 0 0 β1 0 0 0 0
α1 0 0 0 α1 0 0 0 α1 0 0 0 0 0 0 0
0 β1 0 0 0 α1 0 0 0 β1 0 0 0 0 0 0
0 0 α1 0 0 0 α1 0 0 0 β1 0 0 0 0 0
0 0 0 β1 0 0 0 α1 0 0 0 α1 0 0 0 0
α1 0 0 0 α1 0 0 0 α1 0 0 0 0 0 0 0
0 α1 0 0 0 β1 0 0 0 α1 0 0 0 0 0 0
0 0 β1 0 0 0 β1 0 0 0 α1 0 0 0 0 0
0 0 0 β1 0 0 0 α1 0 0 0 α1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



,

Here: α1 := 0.0833, β1 := −0.0833.
Note that the above matrix is not diagonal.



SQMF for Hardy’s Paradox
Consider q1,2,3(x1, x2, x3, x

′
1, x

′
2, x

′
3) :=

∑
x4,x′

4
q(x1, . . . , x4, x

′
1, . . . , x

′
4).
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

α1 0 0 0 α1 0 0 0 α1 0 0 0 0 0 0 0
0 α1 0 0 0 β1 0 0 0 α1 0 0 0 0 0 0
0 0 α1 0 0 0 α1 0 0 0 β1 0 0 0 0 0
0 0 0 α1 0 0 0 β1 0 0 0 β1 0 0 0 0
α1 0 0 0 α1 0 0 0 α1 0 0 0 0 0 0 0
0 β1 0 0 0 α1 0 0 0 β1 0 0 0 0 0 0
0 0 α1 0 0 0 α1 0 0 0 β1 0 0 0 0 0
0 0 0 β1 0 0 0 α1 0 0 0 α1 0 0 0 0
α1 0 0 0 α1 0 0 0 α1 0 0 0 0 0 0 0
0 α1 0 0 0 β1 0 0 0 α1 0 0 0 0 0 0
0 0 β1 0 0 0 β1 0 0 0 α1 0 0 0 0 0
0 0 0 β1 0 0 0 α1 0 0 0 α1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



,



α2 0 0 0 α2 0 0 0
0 α2 0 0 0 β2 0 0
0 0 α2 0 0 0 0 0
0 0 0 α2 0 0 0 0
α2 0 0 0 α2 0 0 0
0 β2 0 0 0 α2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

.


α1 := 0.0833, β1 := −0.0833 α2 := 0.1667, β2 := −0.1667



SQMF for Hardy’s Paradox
Consider q1,2(x1, x2, x

′
1, x

′
2) :=

∑
x3,x′

3
q1,2,3(x1, x2, x3, x

′
1, x

′
2, x

′
3).
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

α2 0 0 0 α2 0 0 0
0 α2 0 0 0 β2 0 0
0 0 α2 0 0 0 0 0
0 0 0 α2 0 0 0 0
α2 0 0 0 α2 0 0 0
0 β2 0 0 0 α2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

.


,

1
3


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


α2 := 0.1667, β2 := −0.1667 Note that the above matrix is diagonal.



SQMF for Hardy’s Paradox
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SQMF for Hardy’s Paradox
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SQMF for Hardy’s Paradox

▶ The marginal p3,4(1, 1) =
1
12 shows that

it is possible to have x3 = x4 = 1.

▶ The marginals p3,2(1, 0) = 0 and p3,2(1, 1) = 1/6 show that
the condition x3 = 1 implies x2 = 1.

▶ The marginals p1,4(0, 1) = 0 and p1,4(1, 1) = 1/6 show that
the condition x4 = 1 implies x1 = 1.

▶ However, the marginal p1,2(1, 1) = 0 implies that
we cannot have x1 = x2 = 1, which contradicts p3,4(1, 1) > 0.



SQMF for Hardy’s Paradox

Remark

▶ We have expressed Hardy’s paradox in terms of marginals of
SQMFs.

▶ Other paradoxes (e.g. Bell’s test, Wigner’s friend experiment, and
the Frauchiger-Renner paradox) can also be expressed in terms of
some suitably defined SQMFs.



SQMFs

Remark

▶ For any two sets I1, I2 ∈ K, the following local consistency
constraint holds:∑

xI1\I2

p(xI1) =
∑

xI2\I1

p(xI2) (for all xI1∩I2).

▶ Interestingly, this requirement is very similar to the properties of the
beliefs in the local marginal polytope (LMP) of a
standard factor graph (S-FG) [Wainwright and Jordan, 2008].



SQMFs
There are two extreme cases to be considered:

1. The set of marginals {pI}I∈K can be achieved by some joint PMF.

2. The set of marginals {pI}I∈K satisfies only the local consistency
constraints, i.e., {pI}I∈K is in the LMP.

Consider the set of marginals created by jointly classicable variables in
the following quantum system.
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How general can the marginals {pI}I∈K be for different ρ, U1, and U2?



Main Results



Main Results
Definition

We define

1. M(N) to be the set of realizable marginals of the S-FG
N ∈ {N1,N2,N3}, where the local functions in N are varied;

2. LM(K) to be the LMP of the S-FG N1;

3. M(N4) to be the set of the classicable variables’ marginals in the
two-qubit system N4, where ρ, U1, and U2 are varied.
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x3

x4

f1,4 f1,2

f3,2f3,4

Figure: The S-FG N1.

x4 x1 x2 x3

PX4|X1 PX1,X2
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Figure: The S-FG N2.
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Figure: The S-FG N3.

ρ

U1

UH
1

x1

x′
1

x3

x′
3

U2

UH
2

x2

x′
2

x4

x′
4

I

I

Figure: The Q-FG N4.



Main Results

Theorem

The following Venn diagram holds.

M(N3)

M(N1)

M(N2)

M(N4)

LM(K)

We prove that each part in the diagram is non-empty.



Main Results
Let us consider the random variables X1, . . . ,X4 ∈ {0, 1}. The
Clauser-Horne-Shimony-Holt (CHSH) inequality states that∣∣E(X1 · X2) + E(X1 · X4) + E(X3 · X2)− E(X3 · X4)

∣∣ ≤ 2.

In this paper, we prove a Pearson correlation coefficient (PCC)-based
variant of the CHSH inequality.

Theorem

Suppose that the random variables X1, . . . ,X4 ∈ {0, 1} satisfy

Var(X1), . . . , Var(X4) ∈ R>0.

Then the following PCC-based CHSH inequality holds:∣∣Corr(X1 · X2) + Corr(X1 · X4) + Corr(X3 · X2)− Corr(X3 · X4)
∣∣ ≤ 5

2
.

This resolves a conjecture proposed in [Pozsgay et al., 2017].



Conclusion
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Proposition

▶ The SQMF of the above Q-FG can lead to “incompatible” marginals.

▶ We characterize the relationships among the sets of marginals
mentioned in the previous slides.

▶ Many well-known quantum phenomena, e.g., Hardy’s paradox and
Bell’s test, can be cast with this SQMF.
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