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Introduction



PMFs

Consider a sequence Yi,..., Y, of random variables with the joint PMF

Pyi,.v,(V1s-- 3 ¥n)s Y1 E€EV1eei Yo € Y
In a typical scenario of interest, we might have observed
Yi=y1, s Vo1 = Yn1
and would like to estimate Y,, based on these observations.
Usually, Py, ..y,(y1,...,¥n) does not have a “nice” factorization.

However, very often it is possible to find a function p(x,y) such that

1. p(x,y) € Ry for all x,y;
2.3, pxy)=1

3. >, p(x,y) = Py(y) for all y;

4. p(x,y) has a “nice” factorization.

Note that p(x,y) represents a joint PMF over x and y.



PMFs

Example (A Hidden Markov Chain)

After applying a closing-the-box (CTB) operation to the above factor
graph, i.e., summing over the variables associated with the internal
edges, we obtain Py, y,.



QMFs

Consider again a sequence Y3,..., Y, of random variables with the joint
PMF

PY1,...,Y,,(}/1»~-,)’n), }/16371, '~';,yn€yn~

However, now we assume that these random variables represent the
measurements obtained by running some quantum-mechanical
experiment.

Again, a typical scenario of interest is that we would like to estimate Y/,
based on the observations

Yi=Yyi,-oos Yoo1 = Ya-1.



QMFs

In general, the PMF Py(y) does not have a "nice” factorization.

However, frequently it is possible to introduce suitable auxiliary variables
X1, .-+ Xmy X1, ..., X} such that there is a function g(x, x’, y) satisfying

1. g(x,x’,y) € C for all x,x',y;

2. Zx,x’,y g(x,x",y) =1,

3. g(x,x’,y) is a positive semi-definite (PSD) kernel in (x, x") for
every y;

4. Zx,x’ q(x,x’,y) = 'DY(y);

5. g(x,x’,y) has a “nice” factorization.

The function g is called a quantum mass function (QMF)
in [Loeliger and Vontobel, 2017].



4 Yy Y3 Yy

After applying a CTB operation to the above factor graph, i.e., summing
over the variables associated with the internal edges, we obtain Py, . y,.



SQMFs

In [Loeliger and Vontobel, 2020], the authors also introduced
simple quantum mass functions (SQMFs).

An SQMF ¢(x, x') satisfies
1. g(x,x") € C for all x,x’;

2. zx,x’ q(x,x") =1;
3. g(x,x’) is a PSD kernel in (x, x’).

Remark

Observations y in QMFs do not appear explicitly in SQMFs anymore.
However, as we will see later, observations y emerge from SQMFs.



SQMFs

Definition

For x = (x1,...,%m), let Z C{1,..., m} and let Z¢ be its complement.
The variables x7 are called jointly classicable if the marginalized SQMF

qz(xz, xy) = Z q(x,x’)

xze ,Xpe
. , o ,
is zero for all (xz, x;) satisfying xz # x7.

Definition

If the variables xz are jointly classicable then
p(xz) == qz(xz, x1), xz € Xz,
represents a joint PMF over xz.

Definition

Let K be a collection of subsets Z of {1,..., m} such that xz is
classicable.



SQMFs vs. QMFs vs. PMFs

Remark

> By defining p(xz) := qz(xz, xz), we can see that the observations y
that were omitted when going from QMFs to SQMFs can “emerge”
again.

> Typically, the set of marginals {p(xz)}zex is “incompatible”, i.e.,
there is no PMF p(x) such that pz(xz) is a marginal of p(x) for all
Zek.

> Note that there is a strong connection of SQMFs to the so-called
decoherence functional [Gell-Mann and Hartle, 1989,
Dowker and Halliwell, 1992], and via this also to the
consistent-histories approach to quantum mechanics [Griffiths, 2002].
However, the starting point of our investigations is quite different.



SQMF for Hardy’s Paradox

Example

Consider the following quantum factor graph (Q-FG), where
X=X ={01}, ie{l,....4, U =U:="2"

po=(1 1 1 0", p=gp




SQMF for Hardy’s Paradox

The following matrix shows the components of the SQMF g(x, x’),
where both the row index (x1,...,xs) and column index (xi,...,x;)
range over (0,0,0,0),(0,0,0,1),...,(1,1,1,1).
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Here: a3 := 0.0833, 8 := —0.0833.
Note that the above matrix is not diagonal.



SQMF for Hardy’s Paradox
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SQMF for Hardy’s Paradox
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SQMF for Hardy’s Paradox
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SQMF for Hardy’s Paradox

> The marginal p34(1,1) = & shows that
it is possible to have x3 = x4 = 1.

» The marginals p3»(1,0) =0 and p3(1,1) = 1/6 show that
the condition x3 = 1 implies x, = 1.

» The marginals p; 4(0,1) = 0 and p; 4(1,1) = 1/6 show that
the condition x4 = 1 implies x; = 1.

> However, the marginal p; 2(1,1) = 0 implies that
we cannot have x; = x; = 1, which contradicts p34(1,1) > 0.



SQMF for Hardy’s Paradox

Remark

> We have expressed Hardy's paradox in terms of marginals of
SQMFs.

> Other paradoxes (e.g. Bell’s test, Wigner's friend experiment, and
the Frauchiger-Renner paradox) can also be expressed in terms of
some suitably defined SQMFs.



SQMFs

Remark

> For any two sets Iy, I, € IC, the following local consistency
constraint holds:

Z p(XI1) = Z P(XIQ) (fOI‘ all XI1ﬂl—2)'

XI)\ 1 XIo\Iy

> Interestingly, this requirement is very similar to the properties of the
beliefs in the local marginal polytope (LMP) of a
standard factor graph (S5-FG) [Wainwright and Jordan, 2008].



SQMFs

There are two extreme cases to be considered:
1. The set of marginals {pz}zcx can be achieved by some joint PMF.

2. The set of marginals {pz}zci satisfies only the local consistency
constraints, i.e., {pz}zek is in the LMP.

Consider the set of marginals created by jointly classicable variables in
the following quantum system.

How general can the marginals {pz}zck be for different p, Uy, and U,?



Main Results



Main Results
Definition

We define
1. M(N) to be the set of realizable marginals of the S-FG
N € {N1, N2, N3}, where the local functions in N are varied;
2. LM(K) to be the LMP of the S-FG Nj;
3. M(Ny) to be the set of the classicable variables’ marginals in the
two-qubit system N4, where p, Uy, and U, are varied.

X4 X1

Paxi  Pxixe Pxslx
X4 X X2 X3

X3
X3 X2

Figure: The S-FG N;. Figure: The S-FG Na. Figure: The S-FG Ns. Figure: The Q-FG Na.



Main Results

Theorem

The following Venn diagram holds.

©

LM(K)

We prove that each part in the diagram is non-empty.




Main Results

Let us consider the random variables Xi, ..., Xy € {0,1}. The
Clauser-Horne-Shimony-Holt (CHSH) inequality states that

[E(X1 - Xo) + E(X1 - Xa) + E(X3 - Xo) — E(X3 - X)| < 2.

In this paper, we prove a Pearson correlation coefficient (PCC)-based
variant of the CHSH inequality.

Theorem

Suppose that the random variables Xy, ..., Xy € {0,1} satisfy
Var(Xl), ceey Var(X4) € Ryo.
Then the following PCC-based CHSH inequality holds:

|Corr(Xy - Xp) 4 Corr(Xy - X3) + Corr(Xs - Xz) — Corr(Xz - X3)| < g

This resolves a conjecture proposed in [Pozsgay et al., 2017].



Conclusion

Proposition

> The SQMF of the above Q-FG can lead to “incompatible” marginals.

> We characterize the relationships among the sets of marginals
mentioned in the previous slides.

» Many well-known quantum phenomena, e.g., Hardy's paradox and
Bell's test, can be cast with this SQMF.
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