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Overview of the main results
Definition
» [n] £{1,2,...,n}.
> 02 (9(i’j))i,je[n] € R3": a non-negative real-valued matrix.
> i is the set of all n! permutations in [n].
» The determinant:
det(8) £ Z sgn(o H (i, o(
O’ES[,,] IE[I‘I
The complexity of computing the determinant is O(n?).
> The permanent:
perm(0) £ Z H (i, o(i))
O'GS[,,] iE[n]
Computing the permanent is in the complexity class #P

(a counting problem in the class NP).



Overview of the main results

The Bethe permanent permg(0) is a graphical-model-based method

for approximating the permanent of a non-negative matrix.

1 < perm(8)

<22,
~ permp(6) ~

» The first inequality was proven by Gurvits [Gurvits, 2011]
with the help of an inequality by Schrijver [Schrijver, 1998].

» The second inequality was conjectured by Gurvits [Gurvits, 2011]
and proven by Anari and Rezaei [Anari and Rezaei, 2019].

The sum-product algorithm (SPA) finds permg(6) efficiently.



Overview of the main results

Josiah W. Gibbs

Hans Bethe

Permanent

Bethe permanent

Combinatorial

perm(9) = 3> I 0(i,o(i))

TES]y i€[n]
(the sum of weighted configurations)

m

Analytical

perm(6) = exp (— min F/, 6(7))
~y€eln ’

permp(6) = exp (— min FB,G(’Y))
~Yel,




Overview of the main results

Main idea: Bound perm(0) via permg y,(8).

Definition [Vontobel, 2013a] Let M € Z>1.
The degree-M Bethe permanent is defined to be

permg ,(6) £ A</<Pefm(9TPM)>pMeq,M,
where

1
<perm(0TPM)>PMe@M £ |\TJ_M! Z perm(81FM),
PMe\TJM

and \TIM is the set of all possible Py;-lifting of 6.



Overview of the main results

6(1,1) --- 6(1,n)
0= : : e R™",
O(n,1) --- 6(n,n)

The Py-lifting of 6 is defined to be

6(1,1) - PAD ... 4(1,n)- PLN)
GTPM L . . . c RI;/ISXMH

0(n,1)- pnl) . 6(n, n) - p(n.n)

)

PM (S \TJM.



Overview of the main results

Consider o — (j Z) .

For M = 2, a possible 87P¥ is given by

1Py _ 3. pPLL) ‘ b P(12)
“\ . p2y) \ d. p22)

where

pll) _ p(L2) _ p21) _ p(22) _ < 10 ) ‘
01



Overview of the main results
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Overview of the main results

Theorem [Vontobel, 2013b]

A combinatorial characterization for permg(0):

permg(60) = limsup permpg ,(0).
M—00 '



Overview of the main results

Josiah W. Gibbs

Hans Bethe

Permanent

Bethe permanent

Combinatorial

perm(60) = > ] 0(i,a(i))

oESy i€ln]

permp(0) = limsup permpg 5,(6).
M—00

Analytical

perm(6) = exp (— min F/, 6(7))
Yy€Eln ’

permp(0) = exp (— min FByg(’y))
~EMA




Overview of the main results

Definition Define
oV & TT (06, )""Y,  yeTmn M -A(i)) € Zso,
ij€[n)]
where [y, is the set of doubly stochastic matrices of size n x n

with all entries being integer multiples of 1/M.

The first main result:

Lemma There are collections of non-negative real numbers

{ CM,n(’Y)}.yerMm7 {Ca.mn(7) }'rerm,n’

such that "
(perm(0))™ = Z 0M7 - Cuy,n(7),

7€rl\/l,n

(permB,M(e))M = Z oMY - Camn(7).

FYGFM,n



Overview of the main results

The second main result:

Theorem

For every v € ['p.n, the coefficients Cpy 5(v) and Cg m,n(7y) satisfy

Cmn(7) /2\M—1
1< —/" 1 (27 .
~ Ggma(y) — ")

Then we bound perm(8) via permg (6):

perm(60) /2y Mt
1<—— < (2 M-
- permBM(H) ( )

This theorem proves some of the conjectures in [Vontobel, 2013a].
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An S-FG representation of the permanent

The standard factor graph (S-FG) N for 6 consists of

[y

. edges: (1,1),(1,2),(2,1),(2,2);

2. variables associated with edges:
Y(1,1),7(1,2),7(2,1),7(2,2);

3. binary alphabets:

X1, X12, X1, X2 = {0, 1} for variables

7(1,1),7(1,2),7(2,1),7(2,2), respectively;

N ’7(171) 7(172) nxn
* ’_(7(2,1) 1(2.2) ) =T

5. nonnegative-valued local functions £ 1, £ 2,
and f. 1, fc2;




An S-FG representation of the permanent

fr1 fe1
7(1,1)

The details of the standard factor graph (S-FG) N for € are as follows:
> the global function:

g(v) £ hi(v(1,0) - h2(v(2,9) - fea (v (5 1)) - fe2(7(5,2));

> the partition function:

)= > &(y)=pem(8).

ve{0,1}2x2



An S-FG representation of the permanent

0(1,1) --- 0(1,4)
6 = ST e RES*.
0(4,1) - 0(4,4)




An S-FG representation of the permanent

Permanent

Bethe permanent

Combinatorial

perm(f) = 3> I 0(i,o(i))

TES]y i€[n]

permg(0) = limsup permg ().
M—o00 ’

Analytical perm(0) = exp (f min F/, 9(7)) permp(6) = exp (f min FB,9(7)>
YyEMn YETn
Running the sum-product algorithm
Complexity #P complete on the associated S-FG
finds permp(0) efficiently.
erm(60
< p—() < on/2,

~ permg(6)




Main Question

Can we bound perm(8) via permg y,(0)?

This is indeed the case.
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Analyzing perm(@) and permg (0)

Example (n=2and M =2)

a b .
0é<c d)eRZf).

1. We define ', be the set of all doubly stochastic matrices of size

n X n.

2. We define 'y , to be the subset of ', that contains all matrices

where the entries are multiples of 1//M.

3. OMY 2] (9(i,j))M'7(i*j), for vy € Ty p.

ij€[n]



Analyzing perm(0) and permg y,(0)
Example continued (n =2 and M = 2)
For, ki, ko € Z>q, define

1 kl k2
(knke) &~ | r
7 kl + k2 (kz k1> © fathe,2

The permanent and the degree-M Bethe permanent satisfy
perm(@) =a-d+ b-c,
(perm(8))? = (a-d)2+2-a-b-c-d+(c-b)2

1,0) 0,1)

—1. 0/\/1.7( +2. 9/\/1.7(1,1) +1- 9/\/1.7( :
(pormp y(8)) = (perm(6T7)), g
= (a-d)2+a‘b-c-d+(c-b)2

—1-9M7"Y L 1.gM"Y 1. M

0,1)



Analyzing perm(0) and permg y,(0)

Example continued (n =2 and M = 2)

2 (permB7M(0))2 — 0. oMM o5 gMAOD | 5 0,\/],,\/(0,1)’
(0,1)

(perm(6))> = 1-6M7"” 2. M"Y | 1. M

(permp s (6))2 = 1- @MY L 1. gM7"Y 1. oMY,



Analyzing perm(0) and permg y,(0)
Example continued (n =2 and M = 2)

There are collections of coefficients

{CM.n (V) e (y00 400 4001 {CMn(V)}yefyon ya0 yany,

such that
(perm(6))? = > Cmn(7) - 6M7,
YE{7O1) 410 51}
(permp 1(6))* = > Ca.mn(y) - 0M7.

e{yOD (1.0 5.1}
The following bounds hold

(perm(@)) 2
(permB,M (0) ) 2

1 < CM,”(’Y)

<2, 1<
~ Gema(y) T

< 2.



Analyzing perm(0) and permg y,(0)
Example (n = 2 and arbitrary M € Z>1)

(perm(@ )) =(a-d+b-c)MH1
=(a-d+b-c)M.-(a-d+b-c)

( ) ak.dk. bM_k-cM_k>-(a-d—|—b-c)
=0
M

+1
( ) X )) ok gk pMALI—k | (M+1—k
=0

()
<M 1) a dk bM k . M*k'

k

g
s

>
Il

0



Analyzing perm(0) and permg y,(0)

Example continued (n = 2 and arbitrary M € Z>1)
For the above special setup, it holds that

M
CM7n(’Y(k’M_k)) = <k>

The recursion

is equivalent to

Crs1n(vMTITR) = €

)

M n(')’(k_l’M+1_k)) + CM,n (7(k7M_k))'



(2

C3 n 7(3 0) G n(7(2’1 C3 n

\/\/\/

(*r(

C2 n ’7(2 0 C.2 n('y(l’l C2 n

\/\/

(’v( (7(

Cip 0,1

s

1,0) Ci,n

)

\ /

Figure: Pascal’s triangle visualizing the recursion for Cp ,.



Analyzing perm(0) and permg y,(0)
Example continued (n = 2 and arbitrary M € Z>1)
For the above special setup, it holds that

o (4 = 1.

We have the recursion

CB,M+1,n(’Y(k’M+17k))
CB,M,n('Y(k’M_k)) k=0
= { Cgm,n(ykTLMHL=K) k=M+1

\ % ) CB7M,n(,y(k—1,M+1—k)) + % . CB7M7n(7(k,IVI—k)) 1<k<M



Cp3,n(Y®)  Cpan(v? 30(YP?) Cpn

\/\/\

Can’Y(ZO) Can 1) Can

\/\

CB,l,n(’Y(l ) CB,1,n(7(O D)

N/

Cb.0n(+09)

Figure: Generalization of Pascal’s triangle visualizing the recursion Cg p,p.



Analyzing perm(0) and permg y,(0)

General Case (Arbitrary n, M € Z>1)

Lemma Consider collections of non-negative real numbers

{CMv”(’Y)}‘YEFM,,,’ {CB,M,n(‘Y)},-yerMyn'

The permanent and its degree-M Bethe permanent satisfy

(perm(e))M = Z 0M7 - Cy.n(),

7€rM,n

(permBM(O))M = z M7 . Cg ma(7)
YEMm,n



Analyzing perm(0) and permg y,(0)

General Case (Arbitrary n,M € Z>1)

Lemma Let M € Z>5 and v € 'y, 5. The following recursions hold

CM,n('Y) = Z CM—l,n ('701)7
01€8}, ()
1

"~ perm(4rc)

Z Ce,M—-1,n(Voy)-

a1€S,(7)

Ce,m.n(7)

» The main idea is to bound Cp () via Gz m,n(7)

using bounds on perm(%r.c).

» The details of perm(%z ) and v,, are omitted here.
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Bounding the permanent via its approximations

Lemma We bound Cy , via Cg v

Cm,n(7) /2\M—1
1< =< (2" .
~ Gema(y) ~ @)

Theorem Based on

(perm(0))" = >~ M7 - Cu (),

‘YerM,n

(permgn(0)) = 32 07 G (),

'YEFM,n

we bound the permanent perm(8) via its degree-M Bethe permanent:

1< perm(6) < (2n/2)%.
- permB’M(G)



Bounding the permanent via its approximations

Another well-known approximation to perm(@) is the scaled Sinkhorn
permanent [Anari et al., 2021].
Theorem

We bound perm(@) via its degree-M scaled Sinkhorn permanent:

(permscS,M(9)>M - Z oM. Coes,m,n(7),

'YerM,n
MM\ p\M _ Cuanly) _ (MMY
M! n" N CscS,M,n('Y) N M! ’
mn (n! )MMI - perm(60) < mn
(Ml)n/l\/l n" permSCS,M(a) N (Ml)n/M



Outline

Overview of the main results
Analyzing the permanent and its degree-M Bethe permanent
Bounding the permanent via its approximations

» Conclusion



Conclusion

It is possible to bound the permanent of a non-negative matrix

by its degree-M Bethe and scaled Sinkhorn permanents.
Our main results prove conjectures in [Vontobel, 2013a].

Our proofs used some rather strong results
from [Schrijver, 1998, Gurvits, 2011, Anari and Rezaei, 2019,
Egorychev, 1981, Falikman, 1981].

We leave it as an open problem to find “more basic” proofs

for some of the inequalities that were established in this paper.
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An S-FG representation of the permanent

The details of the standard factor graph (S-FG) N for 6 are as follows.

» local functions:

va )= (1 o)
fa(r(L) 2] Vb A(1)=(0 1)

0  Otherwise

Ve 7(2,:)=(1 0)
fa(r(2) 24 Vd 4(2)= (0 1)

0 Otherwise



An S-FG representation of the permanent

The details of the standard factor graph (S-FG) N for 8 are as follows.

» local functions:

(Va +.1)=(1 o)T
EOGD 28 Ve A= (o 1)

0 Otherwise

Vb 7(,2)2(1 O)T
feo(7(5,2)) £ Vd 7(,2)=(0 1)T

0 Otherwise




Analyzing perm(0) and permg y,(0)
Example Let M = 2. Consider

11
,7(1,1) — (1 1) c |_272‘

If 01 € S[p(7y) is chosen to be

then
1 01
- = . (1,0) _ — —~01) e
Yo 2_1 (2 Yy P0'1) <1 O) ~ S 1,2
It holds that

Ga(v) =2, C.(v®Y)=1.



Analyzing perm(0) and permg y,(0)

Let M = 2. Consider
1 11
(1.1) = —- S F2 2.
NI, (1 1) |

If o1 € S[p(7) is chosen to be

then

1 10
Yo = 57— (2 7(1 1) — PUl) = ( ) _ 7(1,0) c r172.

It holds that

Con(vMV)) = 2, Cra(v0) = 1.



Analyzing perm(0) and permg y,(0)
Definition Consider M, N € Z>1 and v € 'y n.

1. The coefficient Cpn(7y) is defined to be the number of

o = (01,...,0m) in S[’X’,] such that oy decomposes 7, i.e.,
Cun() = D2 |7 = {Pron)mepn]
G[M]ES[%]

where [S] £ 1 if the statement S is true and [S] £ 0 if the statement
is false and

1
<P0m>me[M] = M Z Po,,-
mée[M]

M —M-~(i,j))!

Caun(y) = (MY T (

i



Analyzing perm(0) and permg y,(0)
Definition Consider

MeZsr, v€lmn o016 S[n]( )
S[,,] {0' ES[n] | ’7(’ o )) >0,Vie [n]}

We define
N
Yo = M_1 (M-~ —-P,) € ['v—1,n,
where L )
.. J=o1l ..
e . ijeln]
0 Otherwise

The matrix ., is obtained by “peeling off” P,, from ~.



