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Main results
Consider a standard factor graph (S-FG) N where each local function is

defined based on a (possibly different) multi-affine homogeneous real

stable (MAHRS) polynomial.

Then we prove that

1. The projection of the local marginal polytope (LMP) on the edges

in N equals the convex hull of the set of valid configurations

conv(C).

2. For the typical case where the S-FG has a sum-product algorithm

(SPA) fixed point consisting of positive-valued messages only,

the SPA finds the value of the Bethe partition function ZB(N)

exponentially fast.

3. The Bethe free energy function FB has some convexity properties.
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An introductory example

Consider the set of all binary 3× 3 matrices.

We want to know the number of binary 3× 3 matrices with row sums and

column sums equaling two.

The following are example binary 3× 3 matrices:


1 0 0

0 0 1

0 0 1



1 1 0

0 1 1

1 0 1



1 0 1

0 1 1

1 1 0

 .



An introductory example

Consider the set of all binary 3× 3 matrices.

We want to know the number of binary 3× 3 matrices with row sums and

column sums equaling two.

The following are example binary 3× 3 matrices:


1 0 0

0 0 1

0 0 1


︸ ︷︷ ︸

×

,


1 1 0

0 1 1

1 0 1


︸ ︷︷ ︸

,


1 0 1

0 1 1

1 1 0


︸ ︷︷ ︸

.

The number of such matrices is 3!.



An introductory example


1 1 0

0 1 1

1 0 1

 ,


1 0 1

0 1 1

1 1 0

 .

▶ These binary matrices can be viewed as binary contingency tables of

size 3× 3 with row sums and column sums equaling two.

▶ The number of such binary contingency tables is 3!.
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Setup

Definition

1. [n] ≜ {1, 2, . . . , n} for n ∈ Z≥1 and [m] ≜ {1, 2, . . . ,m} for m ∈ Z≥1.

2. x =
(
x(i , j)

)
i∈[n],j∈[m]

: a {0, 1}-valued matrix of size n ×m.

3. For the i-th row x(i , :), we introduce an integer ri and impose a

constraint on the row sum:

Xri =

x(i , :)

∣∣∣∣∣∣
∑
j∈[m]

x(i , j) = ri

 .

4. For the j-th column x(:, j), we introduce an integer cj and impose a

constraint on the column sum:

Xcj =

x(:, j)

∣∣∣∣∣∣
∑
i∈[n]

x(i , j) = cj

 .



Setup

Definition

5. The set of valid configurations is defined to be

C ≜

{
x ∈ {0, 1}n×n

∣∣∣∣∣ x(i , :) ∈ Xri , ∀i ∈ [n],

x(:, j) ∈ Xcj , ∀j ∈ [m]

}
,

the set of binary matrices such that the i-th row sum is ri

and the j-th column sum is cj .

6. We want to compute the number of the valid configurations |C|.
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Graphical-model-based approximation method

Main idea

1. Define a standard factor graph (S-FG) N whose partition function

equals

Z (N) = |C|.

2. Run the sum product algorithm (SPA), a.k.a. belief propagation

(BP), on the S-FG N to compute the Bethe approximation of |C|,
denoted by ZB(N).



Graphical-model-based approximation method

Example

Consider n = m = 3 and ri = cj = 2, i.e., x ∈ {0, 1}3×3.

The i-th row x(i , :) ∈ Xri and the j-th column x(:, j) ∈ Xcj , where

Xri = {(1, 1, 0), (0, 1, 1), (1, 0, 1)}, Xcj = {(1, 1, 0)T, (0, 1, 1)T, (1, 0, 1)T}.

1. The local functions:

fl,i
(
x(i , :)

)
≜

 1 if x(i , :) ∈ Xri

0 otherwise
, fr,j

(
x(:, j)

)
≜

 1 if x(:, j) ∈ Xcj

0 otherwise
.

2. The support of the local functions:

Xfl,i ≜
{
x(i , :) ∈ {0, 1}3

∣∣ fl,i(x(i , :)) > 0
}
= Xri ,

Xfr,j ≜
{
x(:, j) ∈ {0, 1}3

∣∣ fr,j(x(:, j)) > 0
}
= Xcj .



Graphical-model-based approximation method
3. The {0, 1}-valued global function:

g(x) ≜ fl,1
(
x(1, 1), x(1, 2), x(1, 3)

)
· fl,2

(
x(2, 1), x(2, 2), x(2, 3)

)
· · · fr,2

(
x(1, 2), x(2, 2), x(3, 2)

)
· fr,3

(
x(1, 3), x(2, 3), x(3, 3)

)
.

The previously defined set of valid

configurations is equal to the support

of the global function:

C =
{
x ∈ {0, 1}3×3

∣∣ g(x) > 0
}
.

4. The partition function:

Z (N) ≜
∑

x∈{0,1}3×3

g(x) = |C|.

(1, 1)

(1, 2)
(1, 3)

(2
, 1
)

(2, 2)

(2, 3)

(3
, 1
)

(3
, 2
)

(3, 3)

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3



Graphical-model-based approximation method

5. The Bethe approximation of the partition function, i.e., the Bethe

partition function, is defined to be

ZB(N) ≜ exp

(
− min

β∈L(N)
FB(β)

)
,

where FB is the Bethe free energy (BFE)

function,

where L(N) is the local marginal polytope

(LMP) (see, e.g., [Wainwright and Jordan, 2008]).

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3

6. Then we run the sum-product algorithm (SPA),

a.k.a. belief propagation (BP), on the S-FG N to get ZB(N).
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Main results

1. The projection of the LMP on the edges in N equals conv(C).
(For general S-FGs, this projection is a relaxation of conv(C), i.e.,
conv(C) is a strict subset of this projection.)

2. For the typical case where N has an SPA fixed point consisting of

positive-valued messages only, the SPA finds the value of ZB(N)

exponentially fast.

3. The BFE function has some convexity properties.

Comments

▶ A generalization of parts of the results in [Vontobel, 2013].

▶ Even though the S-FG has a non-trivial cyclic structure,

the SPA has a good performance.



Main results

Comments

For the setup where n = m, ri = 1, and cj = 1, it holds that

▶ C = {x | x is a permutation matrix of size n-by-n}

▶ The projection of the LMP on the edges equals the set of doubly

stochastic matrices of size n-by-n.

Birkhoff–von Neumann theorem

The set of doubly stochastic matrices of size n-by-n is the convex hull of

the set of the permutation matrices of size n-by-n.

The main result that conv(C) equals the projection of the LMP on the

edges for our considered S-FG, can be viewed as a generalization.
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A more general setup

An example S-FG

Consider n = m = 3 and ri = cj = 2. Then

fl,i
(
x(i , :)

)
=

 1 if x(i , :) ∈ {(1, 1, 0), (0, 1, 1), (1, 0, 1)}

0 otherwise
,

which corresponds to a multi-affine homogeneous real stable (MAHRS)

polynomial w.r.t. the indeterminates in L ≜
(
L1, L2, L3

)
∈ C3:

pi (L) =
∑

x(i ,:)∈{0,1}3
fl,i

(
x(i , :)

)
·
∏
j∈[3]

(
Lj
)x(i ,j)

= L1 · L2 + L2 · L3 + L1 · L3,
Remark

▶ For details of real stable polynomials, see, e.g., [Gharan, 2020]



Consider a more general setup where each local function is defined

based on a (possibly different) MAHRS polynomial.

Do the previous results hold in this more general setup?

Yes!



An MAHRS Polynomials-based S-FG

The standard factor graph (S-FG) N consists of

1. edges: (1, 1), (1, 2), . . . , (3, 3);

2. Binary matrix

x ≜


x(1, 1) x(1, 2) x(1, 3)

x(2, 1) x(2, 2) x(2, 3)

x(3, 1) x(3, 2) x(3, 3)

.

3. Nonnegative-valued local functions

fl,1, . . . , fr,3;

(1, 1)

(1, 2)
(1, 3)

(2
, 1
)

(2, 2)

(2, 3)

(3
, 1
)

(3
, 2
)

(3, 3)

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3



An MAHRS Polynomials-based S-FG

6. The local function fl,i on the LHS

is defined to be the mapping:

{0, 1}3 → R≥0, x(i , :) 7→ fl,i
(
x(i , :)

)
such that it corresponds to

an MAHRS polynomial.

7. The support of fl,i :

Xfl,i ≜
{
x(i , :) ∈ {0, 1}3

∣∣ fl,i(x(i , :)) > 0
}
.

8. A similar idea in the definitions of fr,j and

Xfr,j on the RHS.

(1, 1)

(1, 2)
(1, 3)

(2
, 1
)

(2, 2)

(2, 3)

(3
, 1
)

(3
, 2
)

(3, 3)

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3



An MAHRS Polynomials-based S-FG
9. The nonnegative-valued global

function:

g(x) ≜ fl,1
(
x(1, :)

)
· fl,2

(
x(2, :)

)
· fl,3

(
x(3, :)

)
· fr,1

(
x(:, 1)

)
· fr,2

(
x(:, 2)

)
· fr,3

(
x(:, 3)

)
.

10. The set of valid configurations:

C ≜
{
x ∈ {0, 1}3×3

∣∣ g(x) > 0
}
,

which is also the support of the

global function.

11. The partition function:

Z (N) ≜
∑
x∈C

g(x).

(1, 1)

(1, 2)
(1, 3)

(2
, 1
)

(2, 2)

(2, 3)

(3
, 1
)

(3
, 2
)

(3, 3)

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3
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Known results

Consider an S-FG N where each local function is defined based on a

(possibly different) MAHRS polynomial.

Remarks

▶ Exactly computing Z (N) is a #P-complete problem in general.

▶ Run the SPA to find the value of the Bethe partition function

ZB(N) that approximates Z (N).

▶ [Straszak and Vishnoi, 2019, Theorem 3.2]: ZB(N) ≤ Z (N).

▶ Other real-stable-polynomial-based approximation of Z (N)

[Gurvits, 2015, Brändén et al., 2023].



Main results

Consider an S-FG N where each local function is defined based on a

(possibly different) MAHRS polynomial.

▶ The support Xfl,i on the LHS corresponds to a set of bases of a

matroid [Brändén, 2007].

▶ The support of the product of the local functions on the LHS is{
Xfl,1 ×Xfl,2 × · · · × Xfl,n

}
.

▶ Similarly for the local functions and the support on the LHS.

▶ The support of the global function equals the intersection of the

bases of matroids:

C =
{
Xfl,1 ×Xfl,2 × · · · × Xfl,n

}⋂{
Xfr,1 ×Xfr,2 × · · · × Xfr,m

}



Main results

1. The convex hull conv(C) is the projection of the LMP on the edges.

(Based on results on intersection of matroids [Oxley, 2011].)

2. For the typical case where the S-FG has an SPA fixed point consisting

of positive-valued messages only, the SPA finds the value of ZB(N)

exponentially fast.

(Based on the properties of real stable polynomials

in [Brändén, 2007].)

3. The Bethe free energy function FB has some convexity properties.

The proof of the convexity is new.

(Based on the dual form of ZB(N)

in [Straszak and Vishnoi, 2019, Anari and Gharan, 2021].)
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Numerical results

Setup

▶ We first consider the case n = m = 6

and ri = cj = 2.

▶ We independently randomly generate

3000 instances of N.
-4 -2 0 2 4 6

N

-6

-4

-2

0

2

4

6

N
N

Observation

▶ ZB(N) ≤ Z (N) ([Straszak and Vishnoi, 2019, Theroem 3.2]).

▶ ZB(N) provides a good estimate of Z (N) in this case.



Numerical results

Setup

Consider the same setup as the previous

case, but with n = m = 6 replaced by

n = m = 7.

Observation

We can make similar observations.

0 2 4 6 8

N

-2

0

2

4

6

8

N
N
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Future work

▶ Consider a more general S-FG, where each local function corresponds

to a more general polynomial.

▶ Prove the convergence of the SPA for a more general S-FG.



Connection to other works

▶ Polynomial approaches to approximate partition functions.

[Gurvits, 2011, Straszak and Vishnoi, 2017, Anari and Gharan, 2021]

▶ The properties of real stable polynomials and the partition functions.

[Brändén, 2014, Borcea and Brändén, 2009, Borcea et al., 2009]
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