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Overview of standard factor graphs (S-FGs)

▶ The standard factor graph (S-FG) N consists of

1. nonnegative-valued local functions f1, . . . , f4;

2. edges 1, . . . , 5;

3. alphabets X1, . . . ,X5 for variables x1, . . . , x5,
respectively.

f1 f2

f3 f4

x1

x2 x3 x4

x5

▶ The global function for N:

g(x1, . . . , x5) ≜ f1(x1, x2, x3) · f2(x1, x4) · f3(x2, x5) · f4(x3, x4, x5).

▶ We want to approximate the partition function of N:

Z (N) ≜
∑

x1∈X1,...,x5∈X5

g(x1, . . . , x5).



Overview of the sum-product algorithm (SPA)
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Let e3 = (fi , fj) ∈ E . The message µ
(t)
e3→fj

is updated based on

µ
(t)
e3→fj

(xe3) ∝
∑

xe1 ,xe2

fi (xe1 , xe2 , xe3) · µ
(t−1)
e1→fi

(xe1) · µ
(t−1)
e2→fi

(xe2).



Overview of the main results

Prior work by Yedidia et al. in [Yedidia et al., 2005]:

1. For standard factor graph (S-FG) with positive-valued local functions
only, all local minima of the Bethe free energy function correspond to
SPA fixed points.

Our work:

1. By slightly modifying the S-FG with nonnegative-valued local
functions if necessary, we relate the global minimum of the Bethe free
energy function to an SPA fixed point.

2. The result is mainly based on a dual formulation of the Bethe partition
function.
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Introduction to S-NFGs

▶ Global multivariate function factors into a product of local functions.

▶ Many inference problems can be formulated as computing the
marginals and partition function of the global functions.

▶ S-NFGs are used to visualize the factorizations of the
nonnegative-valued global functions.

▶ Efficient algorithms take advantage of such factorization.

▶ The word “normal” means that the variables are arguments of only one
or two local functions.



The definition of S-NFGs

The S-NFG N(F , E ,X ) consists of:

1. the graph (F , E), where an f ∈ F denotes a function node and the
associated local function;

2. the alphabet X ≜
∏

e∈E Xe .

An S-NFG consists of two kinds of edges:

1. full edges;

2. half edges.

f1 f2

f3 f4

x1

x2 x3 x4

x5
x6



The definition of S-NFGs
Given N(F , E ,X ), define

1. the local function: f :
∏

e∈∂f
Xe → R≥0;

2. the global function: g(x) ≜
∏
f ∈F

f (xf );

3. the partition function: Z (N) ≜
∑
x
g(x);

4. the probability mass function (PMF): p(x) ≜ g(x)/Z (N);

5. the marginal:

pI(xI) ≜
∑
xIc

p(x), xI ∈ X |I|e , I ⊆ E(N).



From Factor Graph to Normal Factor Graph
f1
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f3

f4
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Figure: The factor graph.
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Figure: The associated normal factor
graph.

Consider a global function

g(x1, . . . , x4) = f1(x1, x2) · f2(x1, x3) · f3(x1, x4) · f4(x2, x3)

The partition function and the marginals are unchanged.



From NFG with half edges to NFG with full edges
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Figure: The normal factor graph
with a half edge.

f1

f2

f3

f4

=

f5

x1

x1

x1

x2

x3

x4

Figure: The normal factor graph
with full edges only.

The auxiliary function is defined to be

f5(x4) ≜ 1, x4 ∈ X4.

The partition function and the marginals are unchanged.
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Introduction of the sum-product algorithm (SPA)

▶ The sum-product algorithm (SPA) is also known as loopy belief
propagation (LBP).

▶ The SPA is a practical and powerful way to approximately compute
the marginals and the partition function.

▶ The SPA decoding of low-density parity-check (LDPC) codes
appears in the 5G telecommunications standard.



The sum-product algorithm (SPA)

−→
µ

(t)
e3→fj

e3

−→
µ (t−

1)
e
1→

fie
1

−→µ
(t
−1

)

e 2
→
f i

e 2

fi fj

Let t be the iteration index.

1. For t = 0, we randomly generate µ
(0)
e→f ∈ [0, 1]|Xe | \ {0}.

2. For t ∈ Z>0 and e = (fi , fj), the message from e to fj is updated
according to

µ
(t)
e→fj

(xe) ∝
∑

zfi : ze=xe

fi (zfi ) ·
∏

e′∈∂fi\{e}

µ
(t−1)
e′→fi

(ze′) ∈ R≥0.



Evaluate the belief using the messages

←−
µ

(t)
e3→fi

e3

−→
µ (t)e
1→

fie
1

−→
µ
(t
)

e 2
→
f i

e 2

fi fj

For each f ∈ F , the belief (a.k.a. pseudo-marginal) is

β
(t)
f (xf ) ≜

1

Zf (µ(t))
· f (xf ) ·

∏
e∈∂f

µ
(t)
e→f (xe),

where the normalization constant is given by

Zf (µ
(t)) ≜

∑
xf

f (xf ) ·
∏
e∈∂f

µ
(t)
e→f (xe).



Evaluate the belief using the messages

−→
µ

(t)
e→fj

←−
µ

(t)
e→fi

e

fi fj

For each e = (fi , fj), the belief (a.k.a. pseudo-marginal) is defined to be

β
(t)
e (xe) ≜

1

Ze(µ(t))
· µ(t)

e→fi
(xe) · µ(t)

e→fj
(xe),

where the normalization constant Ze is given by

Ze(µ
(t)) ≜

∑
xe

µ
(t)
e→fi

(xe) · µ(t)
e→fj

(xe).



The Sum Product Algorithm (SPA)

Given µ(t) such that

Ze(µ
(t)) > 0, e ∈ E ,

the approximation of the partition function is defined to be

ZSPA(µ
(t)) ≜

∏
f Zf (µ

(t))∏
e Ze(µ(t))

.

▶ For a cycle-free S-NFG, the SPA fixed point provides exact marginals
and partition function.

▶ By the factorization of the global function, the SPA reduces the
complexity in computing the marginals and partition function.

▶ For an S-NFG from certain classes of S-NFGs with cycles, the SPA
fixed-point messages give good approximations.



The SPA on an example S-NFG
We associate the matrices f1 and f2 with local functions f1 and f2,
respectively.

f1 ≜
(
f1(x1, x2)

)
x1∈X1,x2∈X2

=

(
f1(1,1) ··· f1(1,|X2|)
...

. . .
...

f1(|X1|,1) ··· f1(|X1|,|X2|)

)
,

f2 ≜
(
f2(x1, x2)

)
x1∈X1,x2∈X2

=

(
f2(1,1) ··· f2(1,|X2|)
...

. . .
...

f2(|X1|,1) ··· f2(|X1|,|X2|)

)
,

M ≜ f1 · f T
2 .

f1 f2

x1

x2

The partition function equals

Z (N) =
∑
x1,x2

f1(x1, x2) · f2(x1, x2) = tr
(
f1 · f T

2

)
= tr(M).



The SPA on an example S-NFG

The SPA update rule of the message µ
(t)
1→f1

:

µ
(t)
1→f1

∝ f2 · µ(t−1)
2→f2

,

µ
(t)
1→f1

(x1) =
1

C
(t)
1→f1

·
∑
x2

f2(x1, x2) · µ(t−1)
2→f2

(x2), −→
µ

(t−1)
2→f2

←−
µ

(t)
1→f1

f1 f2

x1

x2

where the normalization constant is given by

C
(t)
1→f1

=
∑
x1,x2

f2(x1, x2) · µ(t−1)
2→f2

(x2).



The SPA on an example S-NFG

The SPA update rule of µ
(t−1)
2→f2

:

µ
(t−1)
2→f2

∝ f T
1 · µ(t−2)

1→f1
,

µ
(t−1)
2→f2

(x2) =
1

C
(t−1)
2→f2

·
∑
x1

f1(x1, x2) · µ(t−2)
1→f1

(x1), −→
µ

(t−1)
2→f2

←−
µ

(t−2)
1→f1

f1 f2

x1

x2

where the normalization constant is given by

C
(t−1)
2→f2

=
∑
x1,x2

f1(x1, x2) · µ(t−2)
1→f1

(x1).



The SPA on an example S-NFG

1. The SPA update rule of µ
(t)
1→f1

is equivalent to applying the power
method for the matrix M :

µ
(t)
1→f1

∝ MT · µ(t−2)
1→f1

, MT = f2 · f T
1 .

2. At an SPA fixed point µ(t):

µ
(t)
1→f1

∝ MT · µ(t)
1→f1

, µ
(t)
1→f2

∝ M · µ(t)
1→f2

.

3. The SPA fixed point messages are the left and right eigenvectors.



The SPA on an example S-NFG

←−
µ

(t)
1→f1

−→
µ

(t)
1→f2

f1 f2

x1

x2

Belief on edge 1:

β
(t)
1 (x1) =

1

Z1(µ(t))
· µ(t)

1→f1
(x1) · µ(t)

1→f2
(x1),

where the normalization constant Z1 is given by

Z1(µ
(t)) =

(
µ
(t)
1→f1

)T

· µ(t)
1→f2

.



The SPA on an example S-NFG
Consider specific f1 and f2:

f1 =
(
1 1
0 1

)
, f2 =

(
1 0
0 1

)
,

M = f1 · f T
2 =

(
1 1
0 1

)
.

f1 f2

x1

x2

▶ The largest eigenvalue is degenerate.

▶ The SPA fixed-point messages on edge 1:

µ
(t)
1→f1

= (0, 1)T, µ
(t)
1→f2

= (1, 0)T.

▶ With that, the normalization constant equals

Z1(µ
(t)) =

(
µ
(t)
1→f1

)T

· µ(t)
1→f2

= 0.

▶ This poses a significant issue when generalizing the results by Yedidia
et al. [Yedidia et al., 2005].



The SPA on an example S-NFG

To address the previous issue, we consider specific f1 and f2 such that

M =

(
1 + δ2(r) 1
δ1(r) 1

)
,

r > 0, δ1(r) > 0, δ2(r) > 0,

lim
r↓0

δ1(r) = lim
r↓0

δ2(r) = 0.

f1 f2

x1

x2

▶ Perron–Frobenius theory can be used to show that at the SPA fixed
point,

β1(x1) > 0, ∀x1, Z1(µ
(t)) > 0.

▶ Set r → 0. Different δ1(r)/δ2(r) results in different SPA fixed-point
messages and different beliefs β1(x1).
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The primal formulation

Given N(F , E ,X ), the local marginal polytope (LMP) B(N) is a
collection of vectors

β ≜
(
{βe}e∈E , {βf }f ∈F

)
satisfying

1. for f ∈ F ,
∑
xf

βf (xf ) = 1 (normalization);

2. for f ∈ F , βf (xf ) ∈ R≥0 (nonnegativity);

3. for e = (fi , fj),
∑

xfi : xe=ze

βfi (xfi ) = βe(ze) =
∑

xfj : xe=ze

βfj (xfj )

(local consistency).

β ∈ B(N) is called a collection of beliefs (a.k.a. pseudo-marginals).



The primal formulation
The Bethe free energy function is defined to be
FB,p,N : B(N) → R ∪ {+∞}

β 7→ −
∑
f

(∑
xf

βf (xf ) · log f (xf )︸ ︷︷ ︸
UB,f (βf )

+
∑
xf

βf (xf ) · log βf (xf )︸ ︷︷ ︸
−HB,f (βf )

)

︸ ︷︷ ︸
FB,f (βf )

−
∑
e

∑
xe

βe(xe) · log βe(xe)︸ ︷︷ ︸
HB,e(βe)

.

The Bethe approximation of the partition function Z (N), called the
Bethe partition function, is defined to be

Z ∗B,p,N ≜ exp

(
− min

β∈B(N)
FB,p,N(β)

)
.



Factor graphs of the primal formulation

fi
fj

xe
βfi

βfj

βfi,e
βfj,e

βe

Mi

=

Mj

FB,fi
FB,fjHB,e

▶ LHS: part of an S-NFG of interest.

▶ RHS: part of an NFG whose global function is equal to the
Bethe free energy function.

▶ The global function of this NFG equals the sum (not the product) of
the local functions.



The primal formulation

When the S-NFG N is cycle-free,

1. the function FB,p,N(β) is convex [Heskes, 2004, Corollary 1];

2. the Bethe partition function Z ∗B,p,N satisfies

Z ∗B,p,N = exp

(
−min

β
FB,p,N(β)

)
= Z (N);

3. the elements in the collection of beliefs

β∗ ∈ argminFB,p,N(β)

are the marginals induced by N [Yedidia et al., 2005, Proposition 3].



The Primal Formulation

[Yedidia et al., 2005, Theorem 2] Interior stationary points of the Bethe
free energy function must be SPA fixed points with positive beliefs and
vice versa.

An interior stationary point of the Bethe free energy function satisfies two
conditions.

1. The belief satisfies βf (xf ) > 0 for all xf ∈
∏

e∈∂f Xe and f ∈ F .

2. The partial derivatives of the associated Lagrangian function exist and
equal zero at this point.

▶ Recall that we want to find the minimum of the Bethe free energy
function over the local marginal polytope.



The primal formulation

Consider specific f1 and f2 associated with function nodes f1 and f2:

f1 =
(
1 1
0 1

)
, f2 =

(
1 0
0 1

)
. f1 f2

x1

x2

1. To minimize FB,p,N, we set βf1(0, 1) = βf2(0, 1) = βf1(1, 0) = 0.

2. The collection of the beliefs that minimize FB,p,N is not in the
interior of the local marginal polytope (LMP).

3. We cannot apply Yedidia et al.’s results directly.



The primal formulation

To make use of Yedidia et al.’s result, we consider positive f1 and f2 instead.

f1 =
(

1 1
δ1(r) 1

)
, f2 =

(
1 δ2(r)

δ3(r) 1

)
,

r > 0, δ1(r) > 0, δ1(r) > 0, δ3(r) > 0,

lim
r↓0

δ1(r) = lim
r↓0

δ2(r) = lim
r↓0

δ3(r) = 0.

f1 f2

x1

x2

1. Apply [Yedidia et al., 2005, Theorem 3] to this modified S-NFG.

2. Let r → 0.

3. Relate the global minimum of the Bethe free energy function to an
SPA fixed point for the original S-NFG with f1 = ( 1 1

0 1 ) and
f2 = ( 1 0

0 1 ).



The dual formulation

A dual formulation of the Bethe partition function was proposed
in [Yedidia et al., 2005, Walsh et al., 2006, Regalia and Walsh, 2007].

Another dual formulation was presented in [Heskes, 2003, Section 4]:

Z ∗B,p,N = maxmin . . .

▶ The dual formulation in [Heskes, 2003, Section 4] is not well defined.
Heskes did not analyze the optimal values’ locations.

▶ Our contribution is to introduce a well-defined problem and study the
optimal value’s locations in [Huang and Vontobel, 2022, Section III].



The definition of the dual formulation
For every edge e = (fi , fj) ∈ E ,

λe ≜
(
λe(xe)

)
xe

∈ R|Xe |, λe,fi ≜ λe , λe,fj ≜ −λe ,

γe ≜
(
γe(xe)

)
xe

∈ R|Xe |
≥0 ,

∑
xe

γe(xe) = 1.

Let µe→f (xe) = exp
(
λe,f (xe)

)
·
√

γe(xe). We define

Ze(γe) ≜
∑
xe

(
exp
(
λe,fi (xe)

)
·
√
γe(xe)

)
︸ ︷︷ ︸

µe→fi

·
(
exp
(
λe,fj (xe)

)
·
√

γe(xe)
)

︸ ︷︷ ︸
µe→fj

=
∑
xe

γe(xe).

For every function node f ∈ F , we define

Zf (γ∂f ,λ∂f ) ≜
∑
xf

f (xf ) ·
∏
e∈∂f

(
exp
(
λe,f (xe)

)
·
√

γe(xe)
)

︸ ︷︷ ︸
µe→f (xe)

.



The definition of the dual formulation
The dual formulation of the Bethe partition function is

Z alt,∗
B,d,N ≜ sup

γ
inf
λ

∏
f

Zf (γ∂f ,λ∂f )

= sup
γ

inf
λ

∏
f Zf (γ∂f ,λ∂f )∏

e Ze(γe)
, Ze(γe) = 1, e ∈ E .

Recall that for SPA fixed-point messages µ, the function ZSPA is

ZSPA(µ) =

∏
f Zf (µ)∏
e Ze(µ)

, Ze(µ) > 0, e ∈ E ,

where

Zf (µ) =
∑
xf

f (xf ) ·
∏
e∈∂f

µe→f (xe), f ∈ F ,

Ze(µ) =
∑
xe

µe→fi (xe) · µe→fj (xe), e = (fi , fj) ∈ E .



The dual formulation for an example S-NFG

Consider specific f1 and f2 associated with function nodes f1 and f2:

f1 =
(
1 1
0 1

)
, f2 =

(
1 0
0 1

)
. f1 f2

x1

x2

There are {γ(m)} and {λ(n)} such that

1. {γ(m)} and {λ(n)} converges to the location of the optimal value

Z alt,∗
B,d,N = sup

γ
inf
λ

∏
f

Zf (γ∂f ,λ∂f ) = Z ∗B,p,N = exp

(
−min

β
FB,p,N(β)

)
;

2. an associated message sequence converges to a collection of
SPA fixed-point messages.

We relate the SPA fixed point to the global minimum of FB,p,N.
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The dualization by Yedidia et al.

βfi
βfj

βfi,e
βfj,e

βe

Mi

=

Mj

FB,fi
FB,fjHB,e

λ′
fi,e

λ′
fj,e

λ′
fi,e

+λ′
fj,e

M̂i

+

M̂j

F̂B,fi
F̂B,fjĤB,e

▶ Dualizing the NFG according to
[Yedidia et al., 2005, Walsh et al., 2006, Regalia and Walsh, 2007].

▶ The details are given in [Yedidia et al., 2005, Section VI]
and [Regalia and Walsh, 2007, Section V-C].



The dualization by Yedidia et al.

β∗ ∈ arg min
β∈B(N)

FB,p,N(β).

1. Construct the associated Lagrangian function L.

2. The set B(N) is defined by linear constraints. Thus β∗ satisfies the
KKT conditions. [Bertsekas, 2016]

3. Assume that β∗ is in the interior of the local marginal polytope
B(N), which implies that

▶ the elements in β∗ are positive-valued;

▶ the partial derivatives of L exist at β = β∗.

4. The KKT conditions imply the dual formulation.



The dualization by Heskes

βfi
βfj

βfi,e
βfj,e

βe

Mi

=

Mj

FB,fi
FB,fjHB,e

βfi
βfj

βfi,e
βfj,e

γe

de

Mi
Me

δ

=

Mj

FB,fi
FB,fjHB,e

log(
√

γe)+λe log(
√

γe)−λe

log(
√

γe)

λe

M̂i
M̂e

δ̂

M̂j

F̂B,fi
F̂B,fjĤB,e

1. Replacing the equal-constraint function node.

2. Dualizing the resulting NFG.

3. The details are in [Huang and Vontobel, 2022, Appendix C].



Comparison between these two dualizations

β∗ ∈ arg min
β∈B(N)

FB,p,N(β).

The dualization by Yedidia et al.

1. Works for the S-NFG where β∗ is in the interior of the local marginal
polytope B(N).

2. Relates β∗ to the SPA fixed point with positive-valued messages
only when β∗ is in the interior of LMP.

3. Does not hold for some S-NFGs where some entries in β∗ are
zero-valued.

The dualization by Heskes.

1. Works for all S-NFG N.

2. Allows us to relate β∗ to the SPA fixed point where some entries in
the messages are zero-valued.
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Comparison of the results

Prior work by Yedidia et al. in [Yedidia et al., 2005]:

▶ Interior stationary points of the Bethe free energy function are
realted to SPA fixed points with positive beliefs and vice versa

▶ For the S-NFG with positive-valued local functions only, all local
minima of the Bethe free energy function correspond to
SPA fixed points .

Our work:

▶ Consider the S-NFG with nonnegative-valued local functions. By
slightly modifying the S-NFG if necessary, we relate the global
minimum of the Bethe free energy function to an SPA fixed point.
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