On the Relationship Between the Minimum of the Bethe Free Energy Function of a Factor Graph and Sum-Product Algorithm Fixed Points

Yuwen Huang and Pascal O. Vontobel

Department of Information Enginerring The Chinese University of Hong Kong yuwen.huang@ieee.org, pascal.vontobel@ieee.org

Outline

Overview of the main results

Standard normal factor graphs (S-NFGs)

The sum-product algorithm (SPA)

The primal and dual formulations of the Bethe partition function

Comparing different dualizations

Comparison of Yedidia et al.'s results and our results

Outline

Overview of the main results

Standard normal factor graphs (S-NFGs)

The sum-product algorithm (SPA)

The primal and dual formulations of the Bethe partition function

Comparing different dualizations

Comparison of Yedidia et al.'s results and our results

Overview of standard factor graphs (S-FGs)

- ▶ The standard factor graph (S-FG) N consists of
 - 1. nonnegative-valued local functions f_1, \ldots, f_4 ;
 - **2.** edges 1, . . . , 5;
 - 3. alphabets $\mathcal{X}_1, \dots, \mathcal{X}_5$ for variables x_1, \dots, x_5 , respectively.

► The global function for N:

$$g(x_1,\ldots,x_5) \triangleq f_1(x_1,x_2,x_3) \cdot f_2(x_1,x_4) \cdot f_3(x_2,x_5) \cdot f_4(x_3,x_4,x_5).$$

► We want to approximate the **partition function** of N:

$$Z(N) \triangleq \sum_{x_1 \in \mathcal{X}_1, \dots, x_n \in \mathcal{X}_n} g(x_1, \dots, x_5).$$

Overview of the sum-product algorithm (SPA)

Let $e_3=(f_i,f_j)\in\mathcal{E}$. The message $oldsymbol{\mu}_{e_3 o f_i}^{(t)}$ is updated based on

$$\mu_{e_3 \to f_j}^{(t)}(x_{e_3}) \propto \sum_{x_{e_1}, x_{e_2}} f_i(x_{e_1}, x_{e_2}, x_{e_3}) \cdot \mu_{e_1 \to f_i}^{(t-1)}(x_{e_1}) \cdot \mu_{e_2 \to f_i}^{(t-1)}(x_{e_2}).$$

Overview of the main results

Prior work by Yedidia et al., 2005]:

1. For standard factor graph (S-FG) with **positive-valued** local functions only, all **local minima** of the Bethe free energy function correspond to **SPA fixed points**.

Our work:

- By slightly modifying the S-FG with nonnegative-valued local functions if necessary, we relate the global minimum of the Bethe free energy function to an SPA fixed point.
- 2. The result is mainly based on a dual formulation of the Bethe partition function.

Outline

Overview of the main results

► Standard normal factor graphs (S-NFGs)

The sum-product algorithm (SPA)

The primal and dual formulations of the Bethe partition function

Comparing different dualizations

Comparison of Yedidia et al.'s results and our results

Introduction to S-NFGs

- ▶ Global multivariate function factors into a product of local functions.
- ► Many inference problems can be formulated as computing the marginals and partition function of the global functions.
- ► S-NFGs are used to visualize the **factorizations** of the **nonnegative-valued** global functions.
- ▶ Efficient algorithms take advantage of such factorization.
 - ► The word "normal" means that the variables are arguments of only one or two local functions.

The definition of S-NFGs

The S-NFG $N(\mathcal{F}, \mathcal{E}, \mathcal{X})$ consists of:

- 1. the graph $(\mathcal{F}, \mathcal{E})$, where an $f \in \mathcal{F}$ denotes a function node and the associated local function;
- 2. the alphabet $\mathcal{X} \triangleq \prod_{e \in \mathcal{E}} \mathcal{X}_e$.

An S-NFG consists of two kinds of edges:

- 1. full edges;
- 2. half edges.

The definition of S-NFGs

Given $N(\mathcal{F}, \mathcal{E}, \mathcal{X})$, define

- **1.** the local function: $f: \prod_{e \in \partial f} \mathcal{X}_e \to \mathbb{R}_{\geq 0}$;
- **2.** the global function: $g(x) \triangleq \prod_{f \in \mathcal{F}} f(x_f)$;
- 3. the partition function: $Z(N) \triangleq \sum_{x} g(x)$;
- **4.** the probability mass function (PMF): $p(x) \triangleq g(x)/Z(N)$;
- 5. the marginal:

$$p_{\mathcal{I}}(\textbf{\textit{x}}_{\mathcal{I}}) \triangleq \sum_{\textbf{\textit{x}}_{\mathcal{I}}} p(\textbf{\textit{x}}), \qquad \textbf{\textit{x}}_{\mathcal{I}} \in \mathcal{X}_{e}^{|\mathcal{I}|}, \, \mathcal{I} \subseteq \mathcal{E}(\mathsf{N}).$$

From Factor Graph to Normal Factor Graph

Figure: The factor graph.

Figure: The associated normal factor graph.

Consider a global function

$$g(x_1,\ldots,x_4)=f_1(x_1,x_2)\cdot f_2(x_1,x_3)\cdot f_3(x_1,x_4)\cdot f_4(x_2,x_3)$$

The partition function and the marginals are unchanged.

From NFG with half edges to NFG with full edges

Figure: The normal factor graph with a half edge.

Figure: The normal factor graph with full edges only.

The auxiliary function is defined to be

$$f_5(x_4) \triangleq 1, \qquad x_4 \in \mathcal{X}_4.$$

The partition function and the marginals are unchanged.

Outline

Overview of the main results

Standard normal factor graphs (S-NFGs)

► The sum-product algorithm (SPA)

The primal and dual formulations of the Bethe partition function

Comparing different dualizations

Comparison of Yedidia et al.'s results and our results

Introduction of the sum-product algorithm (SPA)

The sum-product algorithm (SPA) is also known as loopy belief propagation (LBP).

► The SPA is a **practical and powerful** way to approximately compute the marginals and the partition function.

► The SPA decoding of low-density parity-check (LDPC) codes appears in the 5G telecommunications standard.

The sum-product algorithm (SPA)

Let t be the iteration index.

- 1. For t=0, we randomly generate $\mu_{e\to f}^{(0)}\in [0,1]^{|\mathcal{X}_e|}\setminus \{\mathbf{0}\}.$
- 2. For $t \in \mathbb{Z}_{>0}$ and $e = (f_i, f_j)$, the message from e to f_j is updated according to

$$\mu_{e \to f_j}^{(t)}(x_e) \propto \sum_{\mathbf{z}_{f_i}: z_e = x_e} f_i(\mathbf{z}_{f_i}) \cdot \prod_{e' \in \partial f_i \setminus \{e\}} \mu_{e' \to f_i}^{(t-1)}(\mathbf{z}_{e'}) \in \mathbb{R}_{\geq 0}.$$

Evaluate the belief using the messages

For each $f \in \mathcal{F}$, the belief (a.k.a. pseudo-marginal) is

$$\beta_f^{(t)}(\mathbf{x}_f) \triangleq \frac{1}{Z_f(\boldsymbol{\mu}^{(t)})} \cdot f(\mathbf{x}_f) \cdot \prod_{e \in \partial f} \mu_{e \to f}^{(t)}(x_e),$$

where the normalization constant is given by

$$Z_f(\mu^{(t)}) \triangleq \sum_{\mathbf{x}_f} f(\mathbf{x}_f) \cdot \prod_{e \in \partial f} \mu_{e \to f}^{(t)}(x_e).$$

Evaluate the belief using the messages

For each $e = (f_i, f_j)$, the belief (a.k.a. pseudo-marginal) is defined to be

$$\beta_{e}^{(t)}(x_{e}) \triangleq \frac{1}{Z_{e}(\boldsymbol{\mu}^{(t)})} \cdot \mu_{e \to f_{i}}^{(t)}(x_{e}) \cdot \mu_{e \to f_{j}}^{(t)}(x_{e}),$$

where the normalization constant Z_e is given by

$$Z_e(\mu^{(t)}) \triangleq \sum_{\mathbf{x}} \mu_{e \to f_i}^{(t)}(x_e) \cdot \mu_{e \to f_j}^{(t)}(x_e).$$

The Sum Product Algorithm (SPA)

Given $\mu^{(t)}$ such that

$$Z_e(\mu^{(t)}) > 0, \qquad e \in \mathcal{E},$$

the approximation of the partition function is defined to be

$$Z_{\mathrm{SPA}}(\boldsymbol{\mu}^{(t)}) \triangleq \frac{\prod_f Z_f(\boldsymbol{\mu}^{(t)})}{\prod_e Z_e(\boldsymbol{\mu}^{(t)})}.$$

- ► For a cycle-free S-NFG, the SPA fixed point provides exact marginals and partition function.
 - ▶ By the factorization of the global function, the SPA reduces the complexity in computing the marginals and partition function.
- ► For an S-NFG from certain classes of S-NFGs with cycles, the SPA fixed-point messages give good approximations.

We associate the matrices f_1 and f_2 with local functions f_1 and f_2 , respectively.

$$\begin{aligned} \mathbf{f}_{1} &\triangleq \left(f_{1}(x_{1}, x_{2})\right)_{x_{1} \in \mathcal{X}_{1}, x_{2} \in \mathcal{X}_{2}} = \left(\begin{array}{ccc} f_{1}(1, 1) & \cdots & f_{1}(1, |\mathcal{X}_{2}|) \\ \vdots & \ddots & \vdots \\ f_{1}(|\mathcal{X}_{1}|, 1) & \cdots & f_{1}(|\mathcal{X}_{1}|, |\mathcal{X}_{2}|) \end{array}\right), \quad \begin{matrix} x_{1} \\ f_{1} & & \\ \end{matrix}$$

$$\mathbf{f}_{2} &\triangleq \left(f_{2}(x_{1}, x_{2})\right)_{x_{1} \in \mathcal{X}_{1}, x_{2} \in \mathcal{X}_{2}} = \left(\begin{array}{ccc} f_{2}(1, 1) & \cdots & f_{2}(1, |\mathcal{X}_{2}|) \\ \vdots & \ddots & \vdots \\ f_{2}(|\mathcal{X}_{1}|, 1) & \cdots & f_{2}(|\mathcal{X}_{1}|, |\mathcal{X}_{2}|) \end{array}\right), \end{aligned}$$

$$\mathbf{M} \triangleq \mathbf{f}_1 \cdot \mathbf{f}_2^{\mathsf{T}}.$$

The partition function equals

$$Z(\mathbb{N}) = \sum_{x_1, x_2} f_1(x_1, x_2) \cdot f_2(x_1, x_2) = \operatorname{tr}\left(\mathbf{f}_1 \cdot \mathbf{f}_2^{\mathsf{T}}\right) = \operatorname{tr}(\mathbf{M}).$$

The SPA update rule of the message $\mu_{1 \to f_1}^{(t)}$:

$$oldsymbol{\mu}_{1
ightarrow extit{f}_1}^{(t)} \propto extit{f}_2 \cdot oldsymbol{\mu}_{2
ightarrow extit{f}_2}^{(t-1)},$$

$$\mu_{1\to f_1}^{(t)}(x_1) = \frac{1}{C_{1\to f_1}^{(t)}} \cdot \sum_{x_2} f_2(x_1, x_2) \cdot \mu_{2\to f_2}^{(t-1)}(x_2),$$

where the normalization constant is given by

$$C_{1 \to f_1}^{(t)} = \sum_{x_1, x_2} f_2(x_1, x_2) \cdot \mu_{2 \to f_2}^{(t-1)}(x_2).$$

The SPA update rule of $\mu_{2\to f_2}^{(t-1)}$:

$$oldsymbol{\mu}_{2
ightarrow \mathit{f}_{2}}^{(t-1)} \propto \emph{f}_{1}^{\mathsf{T}} \cdot oldsymbol{\mu}_{1
ightarrow \mathit{f}_{1}}^{(t-2)},$$

$$\mu_{2\to f_2}^{(t-1)}(x_2) = \frac{1}{C_{2\to f_2}^{(t-1)}} \cdot \sum_{x_1} f_1(x_1, x_2) \cdot \mu_{1\to f_1}^{(t-2)}(x_1),$$

where the normalization constant is given by

$$C_{2 \to f_2}^{(t-1)} = \sum_{x_1, x_2} f_1(x_1, x_2) \cdot \mu_{1 \to f_1}^{(t-2)}(x_1).$$

1. The SPA update rule of $\mu_{1 \to f_1}^{(t)}$ is equivalent to applying the power method for the matrix M:

$$m{\mu}_{1
ightarrow f_1}^{(t)} \propto m{M}^{\mathsf{T}} \cdot m{\mu}_{1
ightarrow f_1}^{(t-2)}, \qquad m{M}^{\mathsf{T}} = m{f_2} \cdot m{f_1}^{\mathsf{T}}.$$

2. At an SPA fixed point $\mu^{(t)}$:

$$\boldsymbol{\mu}_{1 \rightarrow f_1}^{(t)} \propto \boldsymbol{M}^\mathsf{T} \cdot \boldsymbol{\mu}_{1 \rightarrow f_1}^{(t)}, \qquad \boldsymbol{\mu}_{1 \rightarrow f_2}^{(t)} \propto \boldsymbol{M} \cdot \boldsymbol{\mu}_{1 \rightarrow f_2}^{(t)}.$$

3. The SPA fixed point messages are the left and right eigenvectors.

Belief on edge 1:

$$\beta_1^{(t)}(x_1) = \frac{1}{Z_1(\boldsymbol{\mu}^{(t)})} \cdot \mu_{1 \to f_1}^{(t)}(x_1) \cdot \mu_{1 \to f_2}^{(t)}(x_1),$$

where the normalization constant Z_1 is given by

$$Z_1(\mu^{(t)}) = \left(\mu_{1
ightarrow f_1}^{(t)}
ight)^\mathsf{T} \cdot \mu_{1
ightarrow f_2}^{(t)}.$$

Consider specific \mathbf{f}_1 and \mathbf{f}_2 :

$$\begin{split} \textbf{\textit{f}}_1 &= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \textbf{\textit{f}}_2 &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \\ \textbf{\textit{M}} &= \textbf{\textit{f}}_1 \cdot \textbf{\textit{f}}_2^\mathsf{T} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. \end{split}$$

- ► The largest eigenvalue is **degenerate**.
- ▶ The SPA fixed-point messages on edge 1:

$$\boldsymbol{\mu}_{1 \to f_1}^{(t)} = (0, 1)^\mathsf{T}, \quad \boldsymbol{\mu}_{1 \to f_2}^{(t)} = (1, 0)^\mathsf{T}.$$

With that, the normalization constant equals

$$Z_1(\boldsymbol{\mu}^{(t)}) = \left(\boldsymbol{\mu}_{1 \rightarrow f_1}^{(t)}\right)^\mathsf{T} \cdot \boldsymbol{\mu}_{1 \rightarrow f_2}^{(t)} = 0.$$

This poses a significant issue when generalizing the results by Yedidia et al. [Yedidia et al., 2005].

To address the previous issue, we consider specific f_1 and f_2 such that

$$m{M} = egin{pmatrix} 1 + \delta_2(r) & 1 \ \delta_1(r) & 1 \end{pmatrix},$$

$$r>0$$
, $\delta_1(r)>0$, $\delta_2(r)>0$,

$$f_1$$
 f_2 f_2

$$\lim_{r\downarrow 0}\delta_1(r)=\lim_{r\downarrow 0}\delta_2(r)=0.$$

▶ Perron—Frobenius theory can be used to show that at the SPA fixed point,

$$\beta_1(x_1) > 0, \quad \forall x_1, \qquad Z_1(\mu^{(t)}) > 0.$$

▶ Set $r \to 0$. Different $\delta_1(r)/\delta_2(r)$ results in different SPA fixed-point messages and different beliefs $\beta_1(x_1)$.

Outline

Overview of the main results

Standard normal factor graphs (S-NFGs)

The sum-product algorithm (SPA)

► The primal and dual formulations of the Bethe partition function

Comparing different dualizations

Comparison of Yedidia et al.'s results and our results

The primal formulation

Given $N(\mathcal{F}, \mathcal{E}, \mathcal{X})$, the **local marginal polytope (LMP)** $\mathcal{B}(N)$ is a collection of vectors

$$\boldsymbol{\beta} \triangleq \left(\{ \boldsymbol{\beta}_e \}_{e \in \mathcal{E}}, \{ \boldsymbol{\beta}_f \}_{f \in \mathcal{F}} \right)$$

satisfying

- 1. for $f \in \mathcal{F}$, $\sum_{\mathbf{x}_f} \beta_f(\mathbf{x}_f) = 1$ (normalization);
- 2. for $f \in \mathcal{F}$, $\beta_f(\mathbf{x}_f) \in \mathbb{R}_{\geq 0}$ (nonnegativity);
- 3. for $e = (f_i, f_j)$, $\sum_{\mathbf{x}_{f_i}: x_e = z_e} \beta_{f_i}(\mathbf{x}_{f_i}) = \beta_e(z_e) = \sum_{\mathbf{x}_{f_j}: x_e = z_e} \beta_{f_j}(\mathbf{x}_{f_j})$ (local consistency).

 $\beta \in \mathcal{B}(N)$ is called a collection of beliefs (a.k.a. pseudo-marginals).

The primal formulation

The Bethe free energy function is defined to be

$$F_{\mathrm{B,p},\mathsf{N}}:~\mathcal{B}(\mathsf{N}) o \mathbb{R} \cup \{+\infty\}$$

$$\beta \mapsto -\sum_{f} \underbrace{\left(\sum_{\mathbf{x}_{f}} \beta_{f}(\mathbf{x}_{f}) \cdot \log f(\mathbf{x}_{f}) + \sum_{\mathbf{x}_{f}} \beta_{f}(\mathbf{x}_{f}) \cdot \log \beta_{f}(\mathbf{x}_{f})\right)}_{U_{\mathrm{B},f}(\beta_{f})} - \sum_{e} \underbrace{\sum_{\mathbf{x}_{e}} \beta_{e}(\mathbf{x}_{e}) \cdot \log \beta_{e}(\mathbf{x}_{e})}_{H_{\mathrm{B},e}(\beta_{e})}.$$

The Bethe approximation of the partition function Z(N), called the Bethe partition function, is defined to be

$$Z_{\mathrm{B,p,N}}^* \triangleq \exp\left(-\min_{m{\beta} \in \mathcal{B}(\mathbf{N})} F_{\mathrm{B,p,N}}(m{\beta})\right).$$

Factor graphs of the primal formulation

- LHS: part of an S-NFG of interest.
- ► RHS: part of an NFG whose global function is equal to the Bethe free energy function.
 - ► The global function of this NFG equals the sum (not the product) of the local functions.

The primal formulation

When the S-NFG N is cycle-free,

- 1. the function $F_{B,p,N}(\beta)$ is **convex** [Heskes, 2004, Corollary 1];
- 2. the Bethe partition function $Z_{\mathrm{B,p,N}}^*$ satisfies

$$Z_{\mathrm{B,p,N}}^* = \exp\left(-\min_{\boldsymbol{\beta}} F_{\mathrm{B,p,N}}(\boldsymbol{\beta})\right) = Z(\mathbb{N});$$

3. the elements in the collection of beliefs

$$\boldsymbol{\beta}^* \in \operatorname{argmin} F_{B,p,N}(\boldsymbol{\beta})$$

are the marginals induced by N [Yedidia et al., 2005, Proposition 3].

The Primal Formulation

[Yedidia et al., 2005, Theorem 2] Interior stationary points of the Bethe free energy function must be SPA fixed points with positive beliefs and vice versa.

An **interior stationary** point of the Bethe free energy function satisfies two conditions.

- 1. The belief satisfies $\beta_f(\mathbf{x}_f) > 0$ for all $\mathbf{x}_f \in \prod_{e \in \partial f} \mathcal{X}_e$ and $f \in \mathcal{F}$.
- 2. The partial derivatives of the associated Lagrangian function exist and equal zero at this point.
 - ► Recall that we want to find the minimum of the Bethe free energy function over the local marginal polytope.

The primal formulation

Consider specific f_1 and f_2 associated with function nodes f_1 and f_2 :

$$\textbf{\textit{f}}_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad \textbf{\textit{f}}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

- **1.** To minimize $F_{B,p,N}$, we set $\beta_{f_1}(0,1) = \beta_{f_2}(0,1) = \beta_{f_1}(1,0) = 0$.
- 2. The collection of the beliefs that minimize $F_{B,p,N}$ is not in the interior of the local marginal polytope (LMP).
- 3. We cannot apply Yedidia et al.'s results directly.

The primal formulation

To make use of Yedidia et al.'s result, we consider positive f_1 and f_2 instead.

$$\begin{aligned} \mathbf{f}_1 &= \begin{pmatrix} 1 & 1 \\ \delta_1(r) & 1 \end{pmatrix}, \ \mathbf{f}_2 &= \begin{pmatrix} 1 & \delta_2(r) \\ \delta_3(r) & 1 \end{pmatrix}, \\ r &> 0, \quad \delta_1(r) > 0, \quad \delta_1(r) > 0, \quad \delta_3(r) > 0, \end{aligned}$$

$$\lim_{r \downarrow 0} \delta_1(r) = \lim_{r \downarrow 0} \delta_2(r) = \lim_{r \downarrow 0} \delta_3(r) = 0.$$

- 1. Apply [Yedidia et al., 2005, Theorem 3] to this modified S-NFG.
- **2.** Let $r \rightarrow 0$.
- 3. Relate the global minimum of the Bethe free energy function to an SPA fixed point for the original S-NFG with $\mathbf{f}_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{f}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

The dual formulation

A dual formulation of the Bethe partition function was proposed in [Yedidia et al., 2005, Walsh et al., 2006, Regalia and Walsh, 2007].

Another dual formulation was presented in [Heskes, 2003, Section 4]:

$$Z_{\mathrm{B,p,N}}^* = \max \min \dots$$

- ► The dual formulation in [Heskes, 2003, Section 4] is not well defined. Heskes did not analyze the optimal values' locations.
- Our contribution is to introduce a well-defined problem and study the optimal value's locations in [Huang and Vontobel, 2022, Section III].

The definition of the dual formulation

For every edge $e = (f_i, f_j) \in \mathcal{E}$,

$$oldsymbol{\lambda}_e \triangleq \left(\lambda_e(x_e)\right)_{x_e} \in \mathbb{R}^{|\mathcal{X}_e|}, \qquad oldsymbol{\lambda}_{e,f_i} \triangleq oldsymbol{\lambda}_e, \, oldsymbol{\lambda}_{e,f_j} \triangleq -oldsymbol{\lambda}_e, \\ oldsymbol{\gamma}_e \triangleq \left(\gamma_e(x_e)\right)_{x_e} \in \mathbb{R}^{|\mathcal{X}_e|}_{\geq 0}, \qquad \sum_{x_e} \gamma_e(x_e) = 1.$$

Let $\mu_{e o f}(x_e) = \exp(\lambda_{e,f}(x_e)) \cdot \sqrt{\gamma_e(x_e)}$. We define

$$Z_{e}(\gamma_{e}) \triangleq \sum_{x_{e}} \underbrace{\left(\exp(\lambda_{e,f_{i}}(x_{e})) \cdot \sqrt{\gamma_{e}(x_{e})}\right)}_{\mu_{e \to f_{i}}} \cdot \underbrace{\left(\exp(\lambda_{e,f_{j}}(x_{e})) \cdot \sqrt{\gamma_{e}(x_{e})}\right)}_{\mu_{e \to f_{j}}}$$

$$= \sum_{x_{e}} \gamma_{e}(x_{e}).$$

For every function node $f \in \mathcal{F}$, we define

$$Z_f(\gamma_{\partial f}, \lambda_{\partial f}) \triangleq \sum_{\mathbf{x}_f} f(\mathbf{x}_f) \cdot \prod_{e \in \partial f} \underbrace{\left(\exp\left(\lambda_{e, f}(\mathbf{x}_e)\right) \cdot \sqrt{\gamma_e(\mathbf{x}_e)}\right)}_{\mu_{e \to f}(\mathbf{x}_e)}.$$

The definition of the dual formulation

The dual formulation of the Bethe partition function is

$$egin{aligned} Z_{\mathrm{B,d,N}}^{\mathrm{alt,*}} & riangleq \sup_{oldsymbol{\gamma}} \prod_{oldsymbol{\lambda}} Z_f(\gamma_{\partial f}, oldsymbol{\lambda}_{\partial f}) \ & = \sup_{oldsymbol{\gamma}} \inf_{oldsymbol{\lambda}} \ rac{\prod_f Z_f(\gamma_{\partial f}, oldsymbol{\lambda}_{\partial f})}{\prod_e Z_e(\gamma_e)}, & Z_e(\gamma_e) = 1, \ e \in \mathcal{E}. \end{aligned}$$

Recall that for SPA fixed-point messages μ , the function $Z_{\rm SPA}$ is

$$Z_{\mathrm{SPA}}(\mu) = \frac{\prod_f Z_f(\mu)}{\prod_e Z_e(\mu)}, \qquad Z_e(\mu) > 0, \ e \in \mathcal{E},$$

where

$$Z_f(\boldsymbol{\mu}) = \sum_{\boldsymbol{x}_f} f(\boldsymbol{x}_f) \cdot \prod_{e \in \partial f} \mu_{e \to f}(x_e), \qquad f \in \mathcal{F},$$

$$Z_e(\boldsymbol{\mu}) = \sum_{\boldsymbol{x}_f} \mu_{e \to f_i}(x_e) \cdot \mu_{e \to f_j}(x_e), \qquad e = (f_i, f_j) \in \mathcal{E}.$$

The dual formulation for an example S-NFG

Consider specific f_1 and f_2 associated with function nodes f_1 and f_2 :

$$\mathbf{f}_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad \mathbf{f}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
 $f_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

There are $\{\gamma^{(m)}\}$ and $\{\lambda^{(n)}\}$ such that

1. $\{\gamma^{(m)}\}$ and $\{\lambda^{(n)}\}$ converges to the location of the optimal value

$$Z_{\mathrm{B},\mathrm{d},N}^{\mathrm{alt},*} = \sup_{\gamma} \inf_{\lambda} \ \prod_{f} Z_{f}(\gamma_{\partial f}, \lambda_{\partial f}) = Z_{\mathrm{B},\mathrm{p},N}^{*} = \exp\biggl(-\min_{\beta} F_{\mathrm{B},\mathrm{p},N}(\beta)\biggr);$$

an associated message sequence converges to a collection of SPA fixed-point messages.

We relate the SPA fixed point to the global minimum of $F_{B,p,N}$.

Outline

Overview of the main results

Standard normal factor graphs (S-NFGs)

The sum-product algorithm (SPA)

The primal and dual formulations of the Bethe partition function

► Comparing different dualizations

Comparison of Yedidia et al.'s results and our results

The dualization by Yedidia et al.

- ▶ Dualizing the NFG according to [Yedidia et al., 2005, Walsh et al., 2006, Regalia and Walsh, 2007].
- ► The details are given in [Yedidia et al., 2005, Section VI] and [Regalia and Walsh, 2007, Section V-C].

The dualization by Yedidia et al.

$$oldsymbol{eta}^* \in \mathop{\mathsf{arg}} \min_{oldsymbol{eta} \in \mathcal{B}(\mathsf{N})} F_{\mathrm{B,p},\mathsf{N}}(oldsymbol{eta}).$$

- 1. Construct the associated Lagrangian function L.
- 2. The set $\mathcal{B}(N)$ is defined by linear constraints. Thus β^* satisfies the KKT conditions. [Bertsekas, 2016]
- 3. Assume that β^* is in the interior of the local marginal polytope $\mathcal{B}(\mathsf{N})$, which implies that
 - ▶ the elements in β^* are positive-valued;
 - ▶ the partial derivatives of L exist at $\beta = \beta^*$.
- 4. The KKT conditions imply the dual formulation.

The dualization by Heskes

- 1. Replacing the equal-constraint function node.
- 2. Dualizing the resulting NFG.
- 3. The details are in [Huang and Vontobel, 2022, Appendix C].

Comparison between these two dualizations

$$oldsymbol{eta}^* \in \arg\min_{oldsymbol{eta} \in \mathcal{B}(\mathsf{N})} F_{\mathrm{B,p},\mathsf{N}}(oldsymbol{eta}).$$

The dualization by Yedidia et al.

- 1. Works for the S-NFG where β^* is in the interior of the local marginal polytope $\mathcal{B}(N)$.
- 2. Relates β^* to the SPA fixed point with **positive-valued messages** only when β^* is in the interior of LMP.
- 3. Does not hold for some S-NFGs where some entries in β^* are zero-valued.

The dualization by Heskes.

- 1. Works for all S-NFG N.
- 2. Allows us to relate β^* to the SPA fixed point where some entries in the messages are zero-valued.

Outline

Overview of the main results

Standard normal factor graphs (S-NFGs)

The sum-product algorithm (SPA)

The primal and dual formulations of the Bethe partition function

Comparing different dualizations

Comparison of Yedidia et al.'s results and our results

Comparison of the results

Prior work by Yedidia et al., 2005]:

- ► Interior stationary points of the Bethe free energy function are realted to SPA fixed points with positive beliefs and vice versa
- ► For the S-NFG with **positive-valued** local functions only, all **local** minima of the Bethe free energy function correspond to SPA fixed points .

Our work:

► Consider the S-NFG with nonnegative-valued local functions. By slightly modifying the S-NFG if necessary, we relate the global minimum of the Bethe free energy function to an SPA fixed point.

Selected References I

Bertsekas, D. P. (2016).

Nonlinear Programming.

Athena Scientific, Belmont, MA, USA, 3rd edition.

Heskes, T. (2003).

Stable fixed points of loopy belief propagation are local minima of the Bethe free energy.

In *Proc. Neural Information Processing Systems (NIPS)*, pages 359–366, Vancouver, Canada.

Heskes, T. (2004).

On the uniqueness of loopy belief propagation fixed points.

Neural Comput., 16(11):2379–2413.

Huang, Y. and Vontobel, P. O. (2022).

On the relationship between the global minimum of the Bethe free energy function of a factor graph and sum-product algorithm fixed point (extended version).

Selected References II

Regalia, P. A. and Walsh, J. M. (2007).

Optimality and duality of the turbo decoder.

Proc. IEEE, 95(6):1362–1377.

Walsh, J. M., Regalia, P. A., and Johnson, Jr, C. R. (2006).

Turbo decoding as iterative constrained maximum-likelihood sequence detection.

IEEE Trans. Inf. Theory, 52(12):5426-5437.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2005).

Constructing free-energy approximations and generalized belief propagation algorithms.

IEEE Trans. Inf. Theory, 51(7):2282–2312.

Thank you!