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Overview

Consider a standard factor graph (S-FG) N where each local function is

defined based on a (possibly different) multi-affine homogeneous real

stable (MAHRS) polynomial.

Various fundamental combinatorial problems in the complexity class

#P-complete, e.g.,

1. counting the number of binary contingency tables

with prescribed marginals

2. and computing the permanent of a non-negative square matrix

can be reformulated as the problem of computing the partition function

of the S-FG.



Overview

Graphical-model-based approximation of the partition function

1. Consider an arbitrary instance S-FG N of this class of S-FGs.

The partition function is Z (N).

2. Run the sum-product algorithm (SPA), a.k.a. belief propagation

(BP), on N to get the Bethe approximation of partition function,

i.e., the Bethe partition function

ZB(N) ≜ exp

(
− min

β∈L(N)
FB(β)

)
,

where (more details later)

▶ L(N) is the local marginal polytope (LMP);

▶ FB is the Bethe free energy function.



Overview of Topic 1

We focus on Topic 1 first.

We prove that

1. The projection of the local marginal polytope (LMP) L(N)
on the edges in N equals the convex hull of the set of

valid configurations conv(C).

2. For the typical case where the S-FG has a sum-product algorithm

(SPA) fixed point consisting of positive-valued messages only,

the SPA finds the value of ZB(N) exponentially fast.

3. The Bethe free energy function FB has some convexity properties.



Overview of Topic 2

We turn to Topic 2.

Consider the matrix

θ ∈ Rn×n
≥0 .

Computing perm(θ), the matrix permanent of θ,

is a #P-complete problem, even in the case where θ ∈ {0, 1}n×n.

Graphical-model-based approximation:

1. By suitably defining the multi-affine homogeneous real stable

(MAHRS) polynomials in the S-FG, we let the partition function

Z (N) equals perm(θ).

2. Run the sum-product algorithm (SPA), a.k.a. belief propagation

(BP), on N to get the Bethe approximation permB(θ).



Overview of Topic 2

Known bounds (more details later):

1 ≤ perm(θ)

permB(θ)
≤ 2n/2.

Our main results

We prove that

1 ≤ perm(θ)

permB,M(θ)
<
(
2n/2

)M−1
M , M ∈ Z≥1,

where permB,M(θ) is the degree-M Bethe permanent,

defined based on finite graph covers.

The lower bound resolves a conjecture in [Vontobel, 2013a].

As M →∞, we recover the known bounds.
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An introductory example

Consider the set of all binary 3× 3 matrices.

We want to know the number of binary 3× 3 matrices with row sums and

column sums equaling two.

The following are example binary 3× 3 matrices:


1 0 0

0 0 1

0 0 1



1 1 0

0 1 1

1 0 1



1 0 1

0 1 1

1 1 0

 .



An introductory example

Consider the set of all binary 3× 3 matrices.

We want to know the number of binary 3× 3 matrices with row sums and

column sums equaling two.

The following are example binary 3× 3 matrices:


1 0 0

0 0 1

0 0 1


︸ ︷︷ ︸

×

,


1 1 0

0 1 1

1 0 1


︸ ︷︷ ︸

,


1 0 1

0 1 1

1 1 0


︸ ︷︷ ︸

.

The number of such matrices is 3!.



An introductory example


1 1 0

0 1 1

1 0 1

 ,


1 0 1

0 1 1

1 1 0

 .

▶ These binary matrices can be viewed as binary contingency tables of

size 3× 3 with row sums and column sums equaling two.

▶ The number of such binary contingency tables is 3!.
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Setup

Definition

1. [n] ≜ {1, 2, . . . , n} for n ∈ Z≥1 and [m] ≜ {1, 2, . . . ,m} for m ∈ Z≥1.

2. γ =
(
γ(i , j)

)
i∈[n],j∈[m]

: a {0, 1}-valued matrix of size n ×m.

3. For the i-th row γ(i , :), we introduce an integer ri and impose a

constraint on the row sum:

Xri =

γ(i , :)

∣∣∣∣∣∣
∑
j∈[m]

γ(i , j) = ri

 .

4. For the j-th column γ(:, j), we introduce an integer cj and impose a

constraint on the column sum:

Xcj =

γ(:, j)

∣∣∣∣∣∣
∑
i∈[n]

γ(i , j) = cj

 .



Setup

Definition

5. The set of valid configurations is defined to be

C ≜

{
γ ∈ {0, 1}n×n

∣∣∣∣∣ γ(i , :) ∈ Xri , ∀i ∈ [n],

γ(:, j) ∈ Xcj , ∀j ∈ [m]

}
,

the set of binary matrices such that the i-th row sum is ri

and the j-th column sum is cj .

6. We want to compute the number of the valid configurations |C|.
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Graphical-model-based approximation method

Main idea

1. Define a standard factor graph (S-FG) N whose partition function

equals

Z (N) = |C|.

2. Run the sum product algorithm (SPA), a.k.a. belief propagation

(BP), on the S-FG N to compute the Bethe approximation of |C|,
denoted by ZB(N).



Graphical-model-based approximation method

Example

Consider n = m = 3 and ri = cj = 2, i.e., γ ∈ {0, 1}3×3.

The i-th row γ(i , :) ∈ Xri and the j-th column γ(:, j) ∈ Xcj , where

Xri = {(1, 1, 0), (0, 1, 1), (1, 0, 1)}, Xcj = {(1, 1, 0)
T, (0, 1, 1)T, (1, 0, 1)T}.

1. The local functions:

fl,i
(
γ(i , :)

)
≜

 1 if γ(i , :) ∈ Xri

0 otherwise
, fr,j

(
γ(:, j)

)
≜

 1 if γ(:, j) ∈ Xcj

0 otherwise
.

2. The support of the local functions:

Xfl,i ≜
{
γ(i , :) ∈ {0, 1}3

∣∣ fl,i(γ(i , :)) > 0
}
= Xri ,

Xfr,j ≜
{
γ(:, j) ∈ {0, 1}3

∣∣ fr,j(γ(:, j)) > 0
}
= Xcj .



Graphical-model-based approximation method
3. The {0, 1}-valued global function:

g(γ) ≜ fl,1
(
γ(1, 1), γ(1, 2), γ(1, 3)

)
· fl,2

(
γ(2, 1), γ(2, 2), γ(2, 3)

)
· · · fr,2

(
γ(1, 2), γ(2, 2), γ(3, 2)

)
· fr,3

(
γ(1, 3), γ(2, 3), γ(3, 3)

)
.

The previously defined set of valid

configurations is equal to the support

of the global function:

C =
{
γ ∈ {0, 1}3×3

∣∣ g(γ) > 0
}
.

4. The partition function:

Z (N) ≜
∑

γ∈{0,1}3×3

g(γ) = |C|.

γ(1, 1)

γ(1, 2)γ
(1, 3)

γ(
2,
1)

γ(2, 2)

γ(2, 3)

γ
(3
, 1
)

γ(
3,
2)

γ(3, 3)

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3



Graphical-model-based approximation method

5. The Bethe approximation of the partition function, i.e., the Bethe

partition function, is defined to be

ZB(N) ≜ exp

(
− min

β∈L(N)
FB(β)

)
,

where FB is the Bethe free energy (BFE)

function,

where L(N) is the local marginal polytope

(LMP) (see, e.g., [Wainwright and Jordan, 2008]).

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3

6. Then we run the sum-product algorithm (SPA),

a.k.a. belief propagation (BP), on the S-FG N to get ZB(N).
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Our main contribution for Topic 1

1. The projection of the LMP on the edges in N equals conv(C).
(For general S-FGs, this projection is a relaxation of conv(C), i.e.,
conv(C) is a strict subset of this projection.)

2. For the typical case where N has an SPA fixed point consisting of

positive-valued messages only, the SPA finds the value of ZB(N)

exponentially fast.

3. The BFE function has some convexity properties.

Comments

▶ A generalization of parts of the results in [Vontobel, 2013a].

▶ Even though the S-FG has a non-trivial cyclic structure,

the SPA has a good performance.



Our main contribution for Topic 1

Comments

For the setup where n = m, ri = 1, and cj = 1, it holds that

▶ C = {γ | γ is a permutation matrix of size n-by-n}

▶ The projection of the LMP on the edges equals

the set of doubly stochastic matrices of size n-by-n.

Birkhoff–von Neumann theorem

The set of doubly stochastic matrices of size n-by-n is the convex hull of

the set of the permutation matrices of size n-by-n.

The main result that conv(C) equals the projection of the LMP on the

edges for our considered S-FG, can be viewed as a generalization.
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A more general setup

An example S-FG

Consider n = m = 3 and ri = cj = 2. Then

fl,i
(
γ(i , :)

)
=

 1 if γ(i , :) ∈ {(1, 1, 0), (0, 1, 1), (1, 0, 1)}

0 otherwise
,

which corresponds to a multi-affine homogeneous real stable (MAHRS)

polynomial w.r.t. the indeterminates in L ≜
(
L1, L2, L3

)
∈ C3:

pi (L) =
∑

γ(i ,:)∈{0,1}3
fl,i
(
γ(i , :)

)
·
∏
j∈[3]

(
Lj
)γ(i ,j)

= L1 · L2 + L2 · L3 + L1 · L3,
Remark

▶ For details of real stable polynomials, see, e.g., [Gharan, 2020]



1. Start from the problem of counting contigency tables.

2. Define the S-FG based on this counting problem.

3. Observe that each local functions corresponds to a special

MAHRS polynomial.

Consider a more general setup where each local function is defined

based on a (possibly different) arbitrary MAHRS polynomial.

Do the previous results hold in this more general setup?

Yes!



An MAHRS Polynomials-based S-FG

The standard factor graph (S-FG) N consists of

1. edges: (1, 1), (1, 2), . . . , (3, 3);

2. Binary matrix

γ ≜


γ(1, 1) γ(1, 2) γ(1, 3)

γ(2, 1) γ(2, 2) γ(2, 3)

γ(3, 1) γ(3, 2) γ(3, 3)

.

3. Nonnegative-valued local functions

fl,1, . . . , fr,3;

γ(1, 1)

γ(1, 2)γ
(1, 3)

γ(
2,
1)

γ(2, 2)

γ(2, 3)

γ
(3
, 1
)

γ(
3,
2)

γ(3, 3)

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3



An MAHRS Polynomials-based S-FG

6. The local function fl,i on the LHS

is defined to be the mapping:

{0, 1}3 → R≥0, γ(i , :) 7→ fl,i
(
γ(i , :)

)
such that it corresponds to

an MAHRS polynomial.

7. The support of fl,i :

Xfl,i ≜
{
γ(i , :) ∈ {0, 1}3

∣∣ fl,i(γ(i , :)) > 0
}
.

8. A similar idea in the definitions of fr,j and

Xfr,j on the RHS.

γ(1, 1)

γ(1, 2)γ
(1, 3)

γ(
2,
1)

γ(2, 2)

γ(2, 3)

γ
(3
, 1
)

γ(
3,
2)

γ(3, 3)

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3



An MAHRS Polynomials-based S-FG
9. The nonnegative-valued global

function:

g(γ) ≜ fl,1
(
γ(1, :)

)
· fl,2

(
γ(2, :)

)
· fl,3

(
γ(3, :)

)
· fr,1

(
γ(:, 1)

)
· fr,2

(
γ(:, 2)

)
· fr,3

(
γ(:, 3)

)
.

10. The set of valid configurations:

C ≜
{
γ ∈ {0, 1}3×3

∣∣ g(γ) > 0
}
,

which is also the support of the

global function.

11. The partition function:

Z (N) ≜
∑
γ∈C

g(γ).

γ(1, 1)

γ(1, 2)γ
(1, 3)

γ(
2,
1)

γ(2, 2)

γ(2, 3)

γ
(3
, 1
)

γ(
3,
2)

γ(3, 3)

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3
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Known results

Consider an S-FG N where each local function is defined based on a

(possibly different) MAHRS polynomial.

Remarks

▶ Exactly computing Z (N) is a #P-complete problem in general.

▶ Run the SPA to find the value of the Bethe partition function

ZB(N) that approximates Z (N).

▶ [Straszak and Vishnoi, 2019, Theorem 3.2]: ZB(N) ≤ Z (N).

▶ Other real-stable-polynomial-based approximation of Z (N)

[Gurvits, 2015, Brändén et al., 2023].



Our main contribution for Topic 1

Consider an S-FG N where each local function is defined based on a

(possibly different) MAHRS polynomial.

▶ The support Xfl,i on the LHS corresponds to

a set of bases of a matroid [Brändén, 2007].

▶ The support of the product of the local functions on the LHS is{
Xfl,1 ×Xfl,2 × · · · × Xfl,n

}
.

▶ Similarly for the local functions and the support on the RHS.

▶ The support of the global function equals the intersection of

the bases of matroids:

C =
{
Xfl,1 ×Xfl,2 × · · · × Xfl,n

}⋂{
Xfr,1 ×Xfr,2 × · · · × Xfr,m

}



Our main contribution for Topic 1

1. The convex hull conv(C) is the projection of the LMP on the edges.

(Based on results on intersection of matroids [Oxley, 2011].)

2. For the typical case where the S-FG has an SPA fixed point consisting

of positive-valued messages only, the SPA finds the value of ZB(N)

exponentially fast.

(Based on the properties of real stable polynomials

in [Brändén, 2007].)

3. The Bethe free energy function FB has some convexity properties.

The proof of the convexity is new.

(Based on the dual form of ZB(N)

in [Straszak and Vishnoi, 2019, Anari and Gharan, 2021].)
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Numerical results

Setup
▶ We first consider the case n = m = 6

and ri = cj = 2, i.e., each local function

is defined based on a (possibly different)

MAHRS polynomial having 6

indeterminates and degree 2.

▶ We independently randomly generate

3000 instances of N.

-4 -2 0 2 4 6

N

-6

-4

-2

0

2

4

6

N
N

Observation

▶ ZB(N) ≤ Z (N) ([Straszak and Vishnoi, 2019, Theroem 3.2]).

▶ ZB(N) provides a good estimate of Z (N) in this case.



Numerical results

Setup

Consider the same setup as the previous

case, but with n = m = 6 replaced by

n = m = 7.

Observation

We can make similar observations.

0 2 4 6 8

N

-2

0

2

4

6

8

N
N
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Future work

▶ Consider a more general S-FG, where each local function corresponds

to a more general polynomial.

▶ Prove the convergence of the SPA for a more general S-FG.



Connection to other works

▶ Polynomial approaches to approximate partition functions.

[Gurvits, 2011, Straszak and Vishnoi, 2017, Anari and Gharan, 2021]

▶ The properties of real stable polynomials and the partition functions.

[Brändén, 2014, Borcea and Brändén, 2009, Borcea et al., 2009]
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Setup
▶ [n] ≜ {1, 2, . . . , n}.

▶ θ ≜
(
θ(i , j)

)
i ,j∈[n] ∈ Rn×n

≥0 : a non-negative real-valued matrix.

▶ S[n] is the set of all n! permutations of [n].

▶ The determinant:

det(θ) ≜
∑
σ∈S[n]

sgn(σ) ·
∏
i∈[n]

θ
(
i , σ(i)

)
.

The complexity of evaluating det(θ) is O(n3).

▶ The permanent:
perm(θ) ≜

∑
σ∈S[n]

∏
i∈[n]

θ
(
i , σ(i)

)
.

The complexity class of evaluating perm(θ) is #P-complete.

Note: In the following, we consider nonnegative-valued square matrices.
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Graphical-model-based approximation method

1. By suitably defining the multi-affine homogeneous real stable

(MAHRS) polynomials in the S-FG, we let the partition function

Z (N) equals perm(θ).

2. Reformulate Z (N):

Z (N) = perm(θ) = exp

(
− min

p∈ΠA(θ)

FG,θ(p)
)
,

where FG,θ is the Gibbs free energy function.

3. Develop the Bethe approximation:

permB(θ) ≜ exp

(
− min

γ∈Γn
FB,θ(γ)

)
,

where FB,θ is the Bethe free energy function.



An S-FG representation of the permanent

The standard factor graph (S-FG) N for θ consists of

1. edges: (1, 1), (1, 2), (2, 1), (2, 2);

2. variables in the matrix

γ ≜

(
γ(1, 1) γ(1, 2)

γ(2, 1) γ(2, 2)

)
∈ {0, 1}2×2.

3. nonnegative-valued local functions

fr,1, fr,2, and fc,1, fc,2;

θ =

(
a b

c d

)

γ(1, 1)

γ(1, 2)

γ(
2,
1)

γ(2, 2)

fr,1 fc,1

fr,2 fc,2



An S-FG representation of the permanent

The details of the standard factor graph (S-FG) N for θ are as follows:

1. The global function:

g(γ) ≜ fr,1
(
γ(1, :)

)
· fr,2

(
γ(2, :)

)
· fc,1

(
γ(:, 1)

)
· fc,2

(
γ(:, 2)

)
;

2. The partition function:

Z (N) =
∑

γ∈{0,1}2×2

g(γ)

= a · d + b · c

= perm(θ).

θ =

(
a b

c d

)

γ(1, 1)

γ(1, 2)

γ(
2,
1)

γ(2, 2)

fr,1 fc,1

fr,2 fc,2



Graphical-model-based approximation method

3. [Vontobel, 2013a]

The Bethe approximation of the permanent,

i.e., the Bethe partition function:

permB(θ) ≜ exp

(
− min

γ∈Γn
FB,θ(γ)

)
,

γ(1, 1)

γ(1, 2)

γ(
2,
1)

γ(2, 2)

fr,1 fc,1

fr,2 fc,2

where FB,θ is the Bethe free energy (BFE) function,

where Γn is the set of doubly stochastic matrices of size n × n.

Note that permB(θ) is also called the Bethe permanent.



Graphical-model-based approximation method

We can make similar definitions for a more general case:

θ =


θ(1, 1) · · · θ(1, 4)

...
. . .

...

θ(4, 1) · · · θ(4, 4)

 ∈ R4×4
≥0 .

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3

fl,4 fr,4

The S-FG for θ.



Graphical-model-based approximation method

Bounding the permanent in terms of the Bethe permanent:

1 ≤ perm(θ)

permB(θ)
≤ 2n/2.

▶ The first inequality was proven by [Gurvits, 2011]

with the help of an inequality by

[Schrijver, 1998].

▶ The second inequality was conjectured by [Gurvits, 2011]

and proven by [Anari and Rezaei, 2019].

[Vontobel, 2013a]

The sum-product algorithm (SPA) finds the value of permB(θ)

exponentially fast.



Graphical-model-based approximation method

Josiah W. Gibbs Hans Bethe

Permanent Bethe permanent

Combinatorial
perm(θ) =

∑
σ∈S[n]

∏
i∈[n]

θ
(
i , σ(i)

)
(the sum of weighted configurations)

???

Analytical perm(θ) = exp

(
− min

p∈ΠA(θ)

FG,θ(p)
)

permB(θ) = exp

(
− min

γ∈Γn
FB,θ(γ)

)

Use finite graph covers to give a combinatorial characterization.
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Finite graph covers

Graph covers (a.k.a. graph lifts) have appeared in various contexts:

▶ [Angluin, 1980]:

Local and global properties in networks of processors.

▶ N. Linial et al. (e.g., [Amit and Linial, 2002])

Various papers on characterizing properties of graph covers.

▶ [Marcus et al., 2015]:

The existence of infinite families of regular bipartite Ramanujan

graphs of every degree larger than 2.

Graph covers in coding theory:

▶ [Koetter and Vontobel, 2003]:

Analysis of message-passing iterative decoders via graph covers.



Finite graph covers

Outline

Introduce a combinatorial characterization of the

Bethe partition function proven in [Vontobel, 2013b].

1. Consider general S-FGs, extending the definition of

the S-FG for the matrix permanent.

2. Introduce finite graph covers.

3. Present a combinatorial characterization of

the Bethe partition function in terms of finite graph covers.

4. Discuss a combinatorial characterization in the case of

the S-FG for the matrix permanent.
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Finite graph covers

original graph (a possible)

2-cover of original graph

Definition: A graph C is a double cover of another graph G if....

Note: the original graph has 2! · 2! · 2! · 2! · 2! = (2!)5 double covers.



Finite graph covers

original graph (a possible)

double cover

(a possible)

triple cover

Besides double covers, a graph also has many triple covers, quadruple

covers, quintuple covers, etc.



Finite graph covers

original graph

←− M −→
σ1

σ2 σ4σ3

σ5

· · · · · ·

· · · · · ·

(a possible) M-fold cover of original graph

An M-fold cover is also called a cover of degree M.

Do not confuse this degree with the degree of a vertex!



· · ·

· · · · · · · · ·

σ1

σ2 σ4σ3

σ5

...N̂M→∞

N̂M

N̂3

N̂2

N̂1

ZB,M→∞(N) = ZB(N)

ZB,M(N)

ZB,3(N)

ZB,2(N)

ZB,1(N) = Z (N)

· · · · · ·

· · · · · ·

The degree-M Bethe partition function:

ZB,M(N) ≜ M

√√√√ 1

|N̂M |

∑
N̂∈N̂M

Z (N̂).

The graph-cover theorem [Vontobel, 2013b]

For any S-FG N, it holds that lim sup
M→∞

ZB,M(N) = ZB(N).



Finite graph covers

Focus on the S-FGs associated with the matrix permanents.

Example

fr,1 fc,1

fr,2 fc,2

θ =

(
a b

c d

)
∈ R2×2

≥0 , Z (N) = perm(θ) = a · d + b · c.



fr,1 fc,1

fr,2 fc,2

Original graph
fr,(1,1) fc,(1,1)

fr,(2,1) fc,(2,1)

fr,(1,2) fc,(1,2)

fr,(2,2) fc,(2,2)

fr,(1,1) fc,(1,1)

fr,(2,1) fc,(2,1)

fr,(1,2) fc,(1,2)

fr,(2,2) fc,(2,2)

Possible 2-covers

Each 2-cover N̂ is an S-FG and induces the partition function Z (N̂).



For the 2-cover N on the RHS,

reformulate Z (N̂):

Z (N̂) = perm(θ↑PM )

fr,(1,1) fc,(1,1)

fr,(2,1) fc,(2,1)

fr,(1,2) fc,(1,2)

fr,(2,2) fc,(2,2)

where the PM-lifting of θ:

θ↑PM =

(
a · P(1,1) b · P(1,2)

c · P(2,1) d · P(2,2)

)
=


a 0 b 0

0 a 0 b

c 0 d 0

0 c 0 d

 ,

and P(1,1), . . . ,P(2,2) are permutation matrices:

P(1,1) = P(1,2) = P(2,1) = P(2,2) =

(
1 0

0 1

)
.



For the 2-cover N on the RHS,

reformulate Z (N̂):

Z (N̂) = perm(θ↑PM )

fr,(1,1) fc,(1,1)

fr,(2,1) fc,(2,1)

fr,(1,2) fc,(1,2)

fr,(2,2) fc,(2,2)

where the PM-lifting of θ:

θ↑PM =

(
a · P(1,1) b · P(1,2)

c · P(2,1) d · P(2,2)

)
=


a 0 b 0

0 a 0 b

c 0 0 d

0 c d 0

 ,

and P(1,1), . . . ,P(2,2) are permutation matrices:

P(1,1) = P(1,2) = P(2,1) =

(
1 0

0 1

)
, P(2,2) =

(
0 1

1 0

)
.



Finite graph covers

Analyzing the degree-M finite graph covers N̂ is equivalent to analyzing

the PM-liftings of θ.

For general θ ∈ Rn×n, define a PM-lifting of θ:

θ↑PM ≜


θ(1, 1) · P(1,1) · · · θ(1, n) · P(1,n)

...
. . .

...

θ(n, 1) · P(n,1) · · · θ(n, n) · P(n,n)

 ∈ RMn×Mn
≥0 ,

where

▶ PM ≜ (P(i ,j))i ,j∈[n];

▶ P(i ,j) is a permutation matrix of size M ×M.



Finite graph covers

Remark

Consider degree-M of finite graph covers of N.

1. For each degree-M finite graph cover N̂, it is an S-FG

and induces a partition function Z (N̂).

2. Observe that Z (N̂) = perm(θ↑PM ) for some PM-lifting of θ.



Finite graph covers

Definitions

1. The degree-M Bethe partition function of N to be

ZB,M(N) ≜ M

√√√√ 1

|N̂M |
·
∑

N̂∈N̂M

Z
(
N̂
)
.

where N̂M is the set of all M-covers of N.

2. [Vontobel, 2013a]

A reformulation in terms of the degree-M Bethe permanent:

permB,M(θ) ≜ M

√√√√ 1

|Ψ̃M |
·
∑

PM∈Ψ̃M

perm(θ↑PM )

= ZB,M(N),

where the set Ψ̃M is the set of all possible PM-lifting of θ.



Finite graph covers

The graph-cover theorem

[Vontobel, 2013a, Vontobel, 2013b]

ZB,M(N)|M=1 = Z (N)

ZB,M(N)

ZB,M(N)|M→∞ = ZB(N)

permB,M(θ)
∣∣
M=1

= perm(θ)

permB,M(θ)

permB,M(θ)
∣∣
M→∞ = permB(θ)

A combinatorial characterization of the Bethe permanent.



Graphical-model-based approximation method

Josiah W. Gibbs Hans Bethe

Permanent Bethe permanent

Combinatorial perm(θ) =
∑

σ∈S[n]

∏
i∈[n]

θ
(
i , σ(i)

)
permB(θ) = lim sup

M→∞
permB,M(θ).

Analytical perm(θ) = exp

(
− min

p∈ΠA(θ)

FG,θ(p)
)

permB(θ) = exp

(
− min

γ∈Γn
FB,θ(γ)

)



Our main contribution for Topic 2

We bound perm(θ) via permB,M(θ).
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Analyzing perm(θ) and permB,M(θ)

Example (n = 2 and M = 2)

θ ≜

(
a b

c d

)
∈ Rn×n

≥0 .

1. Γn : the set of all doubly stochastic matrices of size n × n.

2. ΓM,n: the subset of Γn that contains all matrices

where the entries are multiples of 1/M .

3. θM·γ ≜
∏

i ,j∈[n]

(
θ(i , j)

)M·γ(i ,j)
, for γ ∈ ΓM,n.



Analyzing perm(θ) and permB,M(θ)

Example continued (n = 2 and M = 2)

Define

γ(1,0) ≜

(
1 0

0 1

)
, γ(1,1) ≜

1

2

(
1 1

1 1

)
, γ(0,1) ≜

(
0 1

1 0

)
.

Then
perm(θ) = a · d + b · c ,

(
perm(θ)

)2
= 1 ·

(
a · d

)2
+ 2 · a · b · c · d + 1 ·

(
c · b

)2
= 1 · θM·γ(1,0)

+ 2 · θM·γ(1,1)
+ 1 · θM·γ(0,1)

,

(
permB,M(θ)

)2
=
〈
perm(θ↑PM )

〉
PM∈Ψ̃M

= 1 ·
(
a · d

)2
+ 1 · a · b · c · d + 1 ·

(
c · b

)2
= 1 · θM·γ(1,0)

+ 1 · θM·γ(1,1)
+ 1 · θM·γ(0,1)

.



Analyzing perm(θ) and permB,M(θ)

Example continued (n = 2 and M = 2)

2 ·
(
permB,M(θ)

)2
= 2 · θM·γ(1,0)

+ 2 · θM·γ(1,1)
+ 2 · θM·γ(0,1)

,

(
perm(θ)

)2
= 1 · θM·γ(1,0)

+ 2 · θM·γ(1,1)
+ 1 · θM·γ(0,1)

,

(
permB,M(θ)

)2
= 1 · θM·γ(1,0)

+ 1 · θM·γ(1,1)
+ 1 · θM·γ(0,1)

.



Analyzing perm(θ) and permB,M(θ)

Example continued (n = 2 and M = 2)

There are collections of coefficients{
CM,n(γ)

}
γ∈{γ(0,1),γ(1,0),γ(1,1)},

{
CB,M,n(γ)

}
γ∈{γ(0,1),γ(1,0),γ(1,1)}

such that (
perm(θ)

)M
=

∑
γ∈{γ(0,1),γ(1,0),γ(1,1)}

CM,n(γ) · θM·γ ,

(
permB,M(θ)

)M
=

∑
γ∈{γ(0,1),γ(1,0),γ(1,1)}

CB,M,n(γ) · θM·γ .

The following bounds hold

1 ≤
CM,n(γ)

CB,M,n(γ)
≤ 2, 1 ≤

(
perm(θ)

)M(
permB,M(θ)

)M < 2.



Analyzing perm(θ) and permB,M(θ)

Example continued (n = 2 and arbitrary M ∈ Z≥1)

Generalizing the above result to the case where n = 2 and M ∈ Z≥1,

the coefficients in
(
perm(θ)

)M
satisfy

CM,n

(
γ(k,M−k)

)
=

(
M

k

)
.

Note that the recursion

CM+1,n

(
γ(k,M+1−k)

)
= CM,n

(
γ(k−1,M+1−k)

)
+ CM,n

(
γ(k,M−k)

)
,

is equivalent to (
M + 1

k

)
=

(
M

k − 1

)
+

(
M

k

)
.



Analyzing perm(θ) and permB,M(θ)

1

C0,n

(
γ(0,0)

)
1 1

1

C1,n

(
γ(1,0)

) 1

C1,n

(
γ(0,1)

)
1 1 1 1

1

C2,n

(
γ(2,0)

) 2

C2,n

(
γ(1,1)

) 1

C2,n

(
γ(0,2)

)
1 1 1 1 1 1

1

C3,n

(
γ(3,0)

) 3

C3,n

(
γ(2,1)

) 3

C3,n

(
γ(1,2)

) 1

C3,n

(
γ(0,3)

)

Pascal’s triangle visualizing the recursion for CM,n.



Analyzing perm(θ) and permB,M(θ)

Example continued (n = 2 and arbitrary M ∈ Z≥1)

For the above special setup, the coefficients in
(
permB,M(θ)

)M
satisfy

CB,M,n

(
γ(k,M−k)

)
= 1.

We have the recursion

CB,M+1,n

(
γ(k,M+1−k)

)

=



CB,M,n

(
γ(k,M−k)

)
k = 0

CB,M,n

(
γ(k−1,M+1−k)

)
k = M + 1

1
2 · CB,M,n

(
γ(k−1,M+1−k)

)
+ 1

2 · CB,M,n

(
γ(k,M−k)

)
1 ≤ k ≤ M



Analyzing perm(θ) and permB,M(θ)

1

CB,0,n

(
γ(0,0)

)
1 1

1

CB,1,n

(
γ(1,0)

) 1

CB,1,n

(
γ(0,1)

)
1 1

2
1
2

1

1

CB,2,n

(
γ(2,0)

) 1

CB,2,n

(
γ(1,1)

) 1

CB,2,n

(
γ(0,2)

)
1 1

2
1
2

1
2

1
2

1

1

CB,3,n

(
γ(3,0)

) 1

CB,3,n

(
γ(2,1)

) 1

CB,3,n

(
γ(1,2)

) 1

CB,3,n

(
γ(0,3)

)

Generalization of Pascal’s triangle visualizing the recursion CB,M,n.



Analyzing perm(θ) and permB,M(θ)

1

C0,n

(
γ(0,0)

)
1 1

1

C1,n

(
γ(1,0)

) 1

C1,n

(
γ(0,1)

)
1 1 1 1

1

C2,n

(
γ(2,0)

) 2

C2,n

(
γ(1,1)

) 1

C2,n

(
γ(0,2)

)
1 1 1 1 1 1

1

C3,n

(
γ(3,0)

) 3

C3,n

(
γ(2,1)

) 3

C3,n

(
γ(1,2)

) 1

C3,n

(
γ(0,3)

)

1

CB,0,n

(
γ(0,0)

)
1 1

1

CB,1,n

(
γ(1,0)

) 1

CB,1,n

(
γ(0,1)

)
1 1

2
1
2

1

1

CB,2,n

(
γ(2,0)

) 1

CB,2,n

(
γ(1,1)

) 1

CB,2,n

(
γ(0,2)

)
1 1

2
1
2

1
2

1
2

1

1

CB,3,n

(
γ(3,0)

) 1

CB,3,n

(
γ(2,1)

) 1

CB,3,n

(
γ(1,2)

) 1

CB,3,n

(
γ(0,3)

)

Visualizing the recursions of CM,n and CB,M,n.



Analyzing perm(θ) and permB,M(θ)

General Case (Arbitrary n,M ∈ Z≥1)

Lemma

Consider collections of non-negative real numbers{
CM,n(γ)

}
γ∈ΓM,n

,
{
CB,M,n(γ)

}
γ∈ΓM,n

.

The permanent and its degree-M Bethe permanent satisfy(
perm(θ)

)M
=
∑

γ∈ΓM,n

θM·γ · CM,n(γ),

(
permB,M(θ)

)M
=
∑

γ∈ΓM,n

θM·γ · CB,M,n(γ).



Analyzing perm(θ) and permB,M(θ)

General Case (Arbitrary n,M ∈ Z≥1)

Lemma

Let M ∈ Z≥2 and γ ∈ ΓM,n. The following recursions hold

CM,n(γ) =
∑

σ1∈S[n](γ)

CM−1,n

(
γσ1

)
,

CB,M,n(γ) =
1

perm(γ̂R,C)
·
∑

σ1∈S[n](γ)

CB,M−1,n

(
γσ1

)
.

(The details of perm(γ̂R,C) and γσ1 are omitted here.)

Using bounds on perm(γ̂R,C) proven in

[Schrijver, 1998, Gurvits, 2011, Anari and Rezaei, 2019],

we can bound CM,n(γ) via CB,M,n(γ).
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Bounding the permanent via its approximations
Lemma: We bound CM,n via CB,M,n:

1 ≤
CM,n(γ)

CB,M,n(γ)
≤ (2n/2)M−1,

where the lower bound resolves a conjecture in

[Vontobel, 2013a].

Theorem: Based on(
perm(θ)

)M
=
∑

γ∈ΓM,n

θM·γ · CM,n(γ),

(
permB,M(θ)

)M
=
∑

γ∈ΓM,n

θM·γ · CB,M,n(γ),

we bound the permanent perm(θ) via its degree-M Bethe permanent:

1 ≤ perm(θ)

permB,M(θ)
<
(
2n/2

)M−1
M ,

where the lower bound resolves another conjecture in

[Vontobel, 2013a].



Bounding the permanent via its approximations

We bound the permanent perm(θ) via its degree-M Bethe permanent:

1 ≤ perm(θ)

permB,M(θ)
<
(
2n/2

)M−1
M .

Caveat: The proof uses the bounds in

[Gurvits, 2011, Anari and Rezaei, 2019].

As M →∞,

1 ≤ lim inf
M→∞

perm(θ)

permB,M(θ)
≤ lim

M→∞

(
2n/2

)M−1
M ,

we recover the bounds

1 ≤ perm(θ)

permB(θ)
≤ 2n/2

where

▶ the lower bound proven in [Gurvits, 2011],

▶ the upper bound proven in [Anari and Rezaei, 2019].



Finite-graph-covers-based bounds for the permanent of a

non-negative square matrix

Setup

A graphical-model-based approximation method

Finite graph covers

Analyzing the permanent and its degree-M Bethe permanent

Bounding the permanent via its approximations

▶ Conclusion



Conclusion

▶ Bound the matrix permanent by the degree-M Bethe permanents.

▶ Prove some of the conjectures in [Vontobel, 2013a].

▶ Our proofs used some rather strong results from

[Schrijver, 1998, Gurvits, 2011, Anari and Rezaei, 2019].

Open problems

▶ Find “more basic” proofs on the bounds.

▶ Prove the recursions for general S-FGs, e.g., the S-FG defined based

on multi-affine homogeneous real stable (MAHRS) polynomial.
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