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Overview

1. Analysis of the EPR experiment in terms of normal factor graphs (NFGs)
of simple quantum mass functions (SQMFs).

2. A New CHSH style inequality.
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The EPR Experiment

▶ Alice and Bob shared resource.

▶ The control value on Alice side is
i ∈ {1, 3}.

▶ The control value on Bob side is
j ∈ {2, 4}.

▶ The measurement outcome on
Alice side is zi ∈ {−1, 1}.

▶ The measurement outcome on Bob
side is zj ∈ {−1, 1}.
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If the shared common resource is classical, then the random variables
Z1, . . . ,Z4 ∈ {−1, 1} with realizations z1, . . . , z4 ∈ {−1, 1} satisfy the CHSH
inequality: ∣∣E(Z1 · Z2) + E(Z1 · Z4) + E(Z3 · Z2)− E(Z3 · Z4)

∣∣ ≤ 2.



The CHSH Inequality
For random variables Z1, . . . ,Z4 ∈ {−1, 1}, we have∣∣E(Z1 · Z2) + E(Z1 · Z4) + E(Z3 · Z2)− E(Z3 · Z4)

∣∣ ≤ 2.

Proof.
It holds that

Z1 · Z2 + Z1 · Z4 + Z3 · Z2 − Z3 · Z4 = Z1 · (Z2 + Z4) + Z3 · (Z2 − Z4).

1. If Z2 = Z4, we have

Z1 · (Z2 + Z4) =

{
2Z1 Z2 = 1

−2Z1 Z2 = −1

2. If Z2 ̸= Z4, we have

Z3 · (Z2 − Z4) =

{
2Z3 Z2 = 1

−2Z3 Z2 = −1

■
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If the shared common resource is an entangled quantum system, then
Z1, . . . ,Z4 ∈ {−1, 1} are observables. The average values for the observable
Zi · Zj is

⟨Zi · Zj⟩ =
∑
zi ,zj

zi · zj · βi,j(zi , zj), {i , j} ∈
{
{1, 4}, {1, 2}, {3, 4}, {3, 2}

}
.
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There exist ρ, {Ai,zi}i,zi , and {Bj,zj}j,zj s.t.

⟨Z1 · Z2⟩+ ⟨Z1 · Z4⟩+ ⟨Z3 · Z2⟩ − ⟨Z3 · Z4⟩ = 2
√
2.
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New CHSH style inequality

Whether other measures of correlations can be used for devising CHSH
inequality.

Consider the case where the full data are not available, but only certain
specific (not necessarily linear) functions of the joint probabilities are.

For random variables Z1, . . . ,Z4 ∈ {−1, 1}, the authors in [Pozsgay et al., 2017]
proved that∣∣Cov(Z1,Z2) + Cov(Z1,Z4) + Cov(Z3,Z2)− Cov(Z3,Z4)

∣∣ ≤ 16

7
,

where Cov(Zi ,Zj) is the covariance of random variables Zi and Zj .

They also conjectured that∣∣Corr(Z1,Z2) + Corr(Z1,Z4) + Corr(Z3,Z2)− Corr(Z3,Z4)
∣∣ ≤ 5

2
.



New CHSH style inequality

Theorem
Suppose that the random variables Z1, . . . ,Z4 ∈ {−1, 1} satisfy

Var(Z1), . . . , Var(Z4) ∈ R>0.

The Pearson correlation coefficient (PCC)-based CHSH inequality holds:∣∣Corr(Z1,Z2) + Corr(Z1,Z4) + Corr(Z3,Z2)− Corr(Z3,Z4)
∣∣ ≤ 5

2
.

which resolves a conjecture proposed in [Pozsgay et al., 2017].

Proof.
See [Huang and Vontobel, 2021]. ■

Remark
This inequality is a non-linear function w.r.t. the probability of the random
variables Z1, . . . ,Z4 ∈ {−1, 1}.
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▶ Introduction of Normal Factor Graphs (NFGs)

▶ Definition of S-NFGs

▶ PMFs induced by an S-NFG



Introduction of Normal Factor Graphs (NFGs)



Introduction of NFGs

▶ NFG are used to represent factorizations of multivariate functions.

▶ Many inference problems can be formulated as computing the marginals
of some multivariate functions.

▶ The word “normal” refers to the fact that variables are arguments of only
one or two local functions.

Example

g(x1, . . . , x4) ≜ f1(x1, x2, x3) · f2(x1, x4)
· f3(x2, x5, x6) · f4(x3, x4, x5)

f1 f2

f3 f4

x1

x2 x3 x4

x5x6

Consider a factor graph.

▶ A half edge: an edge incident on one function node

▶ A full edge: an edge incident on two function nodes.



Definition of S-NFGs



Definition of S-NFGs

Definition
The S-NFG N(F , E ,X ) consists of:

1. the graph (F , E) with vertex set F and edge set E , where

▶ E consists of all full edges and half edges in N,

▶ F is the set of function nodes;

2. the alphabet X :=
∏

e∈E Xe , where Xe is the alphabet associated with
edge e ∈ E .

An f ∈ F will denote a function node and the corresponding local function.



Definition of S-NFGs

Definition
Let ⟨R,+, ·⟩ be a ring. Given N(F , E ,X ), we make the following definitions.

1. The local function f associated with function node f ∈ F denotes an
arbitrary mapping

f :
∏
e∈∂f

Xe → R.

2. The global function is defined to be

g(x) ≜
∏
f∈F

f (x∂f ).

3. The partition function is defined to be

Z (N) ≜
∑
x

g(x).



Definition of S-NFGs

Definition
If the ring R in the definition of local functions is the set of nonnegative real
numbers, i.e., R≥0, then we make further definitions.

4. The probability mass function (PMF) induced on N is defined to be the
function

p(x) ≜ g(x)/Z (N).

5. Let I be a subset of E and let Ic ≜ E \ I be its complement. The
marginal pI is defined to be

pI(xI) ≜
∑
xIc

p(x), xI ∈ X |I|
e .

In case of setups with multiple NFGs, we add index N in functions g and p. For
general definition, we simply omit this index.
There is no loss of generality of the case where the number of edges incident on
each function node is two.



Definition of S-NFGs

1. Local functions: f1,4, . . . , f3,4;

2. Set of edges: Efull = {1, 2, 3, 4};
3. Global function:

gN1(x1, . . . , x4) = f1,4(x1, x4) · f1,2(x1, x2) · f3,4(x3, x4) · f3,2(x3, x2);

4. Partition function: Z (N1) =
∑

x1,...,x4
gN1(x1, . . . , x4).

5. Probability mass function:

pN1(x1, . . . , x4) = gN1(x1, . . . , x4)/Z (N)

6. Let the set I be I ⊆ {1, 2, 3, 4}.
7. The marginals:

pN1,I(xI) =
∑
xIc

pN1(x), xI ∈ X |I|
e ,

pN1,{i,j}(xi , xj) =
∑

x{1,2,3,4}\{i,j}

pN1(x1, . . . , x4).

x1

x2

x3

x4

f1,4 f1,2

f3,2f3,4

The S-NFG N1.
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PMFs induced by an S-NFG
Consider a sequence Y1, . . . ,Yn of random variables with the joint PMF

PY1,...,Yn(y1, . . . , yn), y1 ∈ Y1, . . . , yn ∈ Yn.

In a typical scenario of interest, we might have observed

Y1 = y1, . . . ,Yn−1 = yn−1

and would like to estimate Yn based on these observations.

Usually, PY1,...,Yn(y1, . . . , yn) does not have a “nice” factorization.

However, very often it is possible to find a function p(x , y) such that

1. p(x , y) ∈ R≥0 for all x , y ;

2.
∑

x,y p(x , y) = 1;

3.
∑

x p(x , y) = PY (y) for all y ;

4. p(x , y) has a “nice” factorization.

Note that p(x , y) represents a joint PMF over x and y .



PMFs induced by an S-NFG

Example (A Hidden Markov Model)

PY1,...,Y4

Y1 Y2 Y3 Y4

PY1,...,Y4(y1, . . . , y4).



PMFs induced by an S-NFG

Example (A Hidden Markov Model)

PY1,...,Y4

PX1

X1 =

PY1|X1

Y1

PX2|X1
X2 =

PY2|X2

Y2

PX3|X2
X3 =

PY3|X3

Y3

PX4|X3
X4 =

PY4|X4

Y4

p(x1, . . . , x4, y1, . . . , y4) = PX1(x1) ·

(
3∏

i=1

PXi+1|Xi
(xi+1|xi )

)
·

(
4∏

i=1

PYi |Xi
(yi |xi )

)
,

PY1,...,Y4(y1, . . . , y4) =
∑

x1,...,x4

p(x1, . . . , x4, y1, . . . , y4)

After applying a closing-the-box (CTB) operation to the above factor graph,
i.e., summing over the variables associated with the internal edges, we obtain
PY1,...,Y4 .



Quantum Mass Functions (QMFs)

▶ Definition of QMFs

▶ An Example Factor Graph for a Quantum Information Process

▶ Definition Simple Quantum Mass Functions (SQMFs)

▶ An SQMF for the EPR Experiment
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Definition of QMFs

Consider again a sequence of random variables Y1, . . . ,Yn with the joint PMF

PY1,...,Yn(y1, . . . , yn), y1 ∈ Y1, . . . , yn ∈ Yn.

However, now we assume that these random variables represent the
measurements obtained by running some quantum-mechanical experiment.

Again, a typical scenario of interest is that we would like to estimate variable Yn

based on the observations

Y1 = y1, . . . ,Yn−1 = yn−1.



QMFs

In general, the PMF PY (y) does not have a “nice” factorization.

However, frequently it is possible to introduce suitable auxiliary quantum
variables x1, . . . xm, x

′
1, . . . , x

′
m such that there is a function q(x , x ′, y) satisfying

1. q(x , x ′, y) ∈ C for all x , x ′, y ;

2.
∑

x,x′,y q(x , x
′, y) = 1;

3. q(x , x ′, y) is a positive semi-definite (PSD) kernel in quantum variables
(x , x ′) for every classical variable y ;

4.
∑

x,x′ q(x , x ′, y) = PY (y);

5. q(x , x ′, y) has a “nice” factorization.

The function q is called a QMF in [Loeliger and Vontobel, 2017].
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An Example Factor Graph for a QIP

Example

PY1,...,Y4

Y1 Y2 Y3 Y4
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An Example Factor Graph for a QIP

Example
PY1,...,Y4
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▶ A system prepared in ρ.

▶ Partial measurements B1, . . . ,B4.

▶ Unitary evolutions U1, . . . ,U3.

▶ Quantum variables (x1, . . . , x12) and (x ′1, . . . , x
′
12).

After applying a CTB operation to the above factor graph, we obtain PY1,...,Y4 .
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Definition of SQMFs

Interesting enough, it is sufficient to consider the SQMF where the classical
variable y in QMF do not appear explicitly in SQMF anymore. However, as we
will see later, classical variable y emerges from SQMFs.

Definition
An SQMF q(x , x ′) satisfies

1. q(x , x ′) ∈ C for all x , x ′;

2.
∑

x,x′ q(x , x ′) = 1;

3. q(x , x ′) is a PSD kernel in (x , x ′).



Definition of SQMFs

Definition
For x = (x1, . . . , xm), let I ⊆ {1, . . . ,m} and let Ic be its complement. The
variable xI is defined to be xI = (xk)k∈I .

The variables in xI are called jointly classicable if the marginalized SQMF

qI(xI , x ′
I) ≜

∑
xIc ,x′

Ic

q(x , x ′)

is zero for all (xI , x ′
I) satisfying xI ̸= x ′

I .

Definition
If the variables in xI are jointly classicable then

p(xI) ≜ qI(xI , xI), xI ∈ XI ,

represents a joint PMF over xI .



Properties of SQMFs

Remark▶ By defining p(xI) ≜ qI(xI , xI), we can see that classical variable y that
were omitted when going from QMFs to SQMFs can “emerge” again.

▶ Note that there is a strong connection of SQMFs to the so-called
decoherence
functional [Gell-Mann and Hartle, 1989, Dowker and Halliwell, 1992], and
via this also to the consistent-histories approach to quantum
mechanics [Griffiths, 2002]. However, the starting point of our
investigations is quite different.
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An SQMF for the EPR Experiment
The PMF for the measurement outcomes in the EPR experiment can be
obtained by the marginals of the SQMF represented by the following NFG.

▶ Variables x1 and x2 are jointly classicable variables, i.e., the marginal
q1,2(x1, x2, x

′
1, x

′
2) = 0 when x1 ̸= x ′1 or x2 ̸= x ′2;

▶ Variables x1 and x4 are jointly classicable variables;
▶ Variables x3 and x2 are jointly classicable variables;
▶ Variables x3 and x4 are jointly classicable variables;
▶ However, variables x1, . . . , x4 are not jointly classicable variables, i.e, exists

x , x ′ s.t. q(x , x ′) ̸= 0 when x ̸= x ′;

ρ

U1

UH
1

x1

x′
1

x3

x′
3

U2

UH
2

x2

x′
2

x4

x′
4

I

I



An SQMF for the EPR Experiment
Example

Consider the following NFG, where

Xi = X ′
i ≜ {0, 1}, i ∈ {1, . . . , 4}, U1 = U2 ≜

√
2

2

(
1 1
1 −1

)
,

ψ ≜
(
1 1 1 0

)T
, ρ ≜ ψ ·ψH.

ρ

U1

UH
1

x1

x′
1

x3

x′
3

U2

UH
2

x2

x′
2

x4

x′
4

I

I



An SQMF for the EPR Experiment
The following matrix shows the components of the SQMF q(x , x ′), where both
the row index (x1, . . . , x4) and column index (x ′1, . . . , x

′
4) range over

(0, 0, 0, 0), (0, 0, 0, 1), . . . , (1, 1, 1, 1).

α1 0 0 0 α1 0 0 0 α1 0 0 0 0 0 0 0
0 α1 0 0 0 β1 0 0 0 α1 0 0 0 0 0 0
0 0 α1 0 0 0 α1 0 0 0 β1 0 0 0 0 0
0 0 0 α1 0 0 0 β1 0 0 0 β1 0 0 0 0
α1 0 0 0 α1 0 0 0 α1 0 0 0 0 0 0 0
0 β1 0 0 0 α1 0 0 0 β1 0 0 0 0 0 0
0 0 α1 0 0 0 α1 0 0 0 β1 0 0 0 0 0
0 0 0 β1 0 0 0 α1 0 0 0 α1 0 0 0 0
α1 0 0 0 α1 0 0 0 α1 0 0 0 0 0 0 0
0 α1 0 0 0 β1 0 0 0 α1 0 0 0 0 0 0
0 0 β1 0 0 0 β1 0 0 0 α1 0 0 0 0 0
0 0 0 β1 0 0 0 α1 0 0 0 α1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



,

Here: α1 ≜ 0.0833, β1 ≜ −0.0833.
Note that the above matrix is not diagonal.
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12
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9 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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Main Results

x1
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x4

f1,4 f1,2

f3,2f3,4

The S-NFG N1.

x4 x1 x2 x3

pX4|X1 pX1,X2
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The S-NFG N2.
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f

The S-NFG N3.
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The NFG N4.

M(N3)

M(N1)

M(N2)

M(N4)

LM(K)



Conclusion

ρ
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4
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Proposition
▶ We characterize the relationships among the sets of marginals mentioned in

the previous slides.

▶ Many well-known quantum phenomena, e.g., Hardy’s paradox and Bell’s
test, can be cast with this SQMF.
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Combining Implications Obtained by the Marginals



Combining Implications
1. The marginal p3,4(1, 1) =

1
12 shows that

it is possible to have x3 = x4 = 1.

2. The marginals p3,2(1, 0) = 0 and p3,2(1, 1) = 1/6 show that
the condition x3 = 1 implies x2 = 1.

3. The marginals p1,4(0, 1) = 0 and p1,4(1, 1) = 1/6 show that
the condition x4 = 1 implies x1 = 1.

4. However, the marginal p1,2(1, 1) = 0 implies that
we cannot have x1 = x2 = 1, which contradicts p3,4(1, 1) > 0.

S1 : x3 = x4 = 1 =⇒ S2 : x2 = 1

S1 : x3 = x4 = 1 =⇒ S3 : x1 = 1

S1 : x3 = x4 = 1 =⇒ S4 : x1 = x2 = 1



Remarks on the SQMF for the EPR Experiment

Remark

▶ Typically, the set of marginals {pI(xI)}I∈K is “incompatible”, i.e., there is
no PMF p(x) such that pI(xI) is a marginal of p(x) for all I ∈ K.

▶ Other paradoxes (e.g. Bell’s test, Wigner’s friend experiment, and the
Frauchiger-Renner paradox) can also be expressed in terms of some suitably
defined SQMFs.



Main Results

Definition

Corr(βi,j) ≜
βi,j(0, 0) · βi,j(1, 1)− βi,j(0, 1) · βi,j(1, 0)√

βi (0) · βi (1) · βj(0) · βj(1)
,

CorrCHSH(β) ≜ Corr(β1,2) + Corr(β1,4) + Corr(β3,2)− Corr(β3,4),

LMCHSH(K) ≜ {β ∈ LM(K) | (1) and (2) hold} ,

where

βi (0) · βi (1) > 0, i ∈ E(N1), (1)∑
{i,j}∈K

(−1)[i=3,j=4] ·
(
βi,j(0, 0) + βi,j(1, 1)− βi,j(0, 1)− βi,j(1, 0)

)
≤ 2, (2)

Inequalities in (2) are inspired by the CHSH inequality. We prove this inequality
by showing

sup
β∈LMCHSH(K)

CorrCHSH(β) =
5

2
.



Main Results

x1x4

x2x3

f

S-NFG N3.

sup
β∈LMCHSH(K)

CorrCHSH(β) =
5

2
.

Suppose that we consider

max
β∈M(N3)

CorrCHSH(β).

For any β ∈ M(N3), the marginal βi,j can be written as a convex combination
of some joint PMF for X1, . . . ,X4, i.e., {pN3(x)}x , which makes the expression
of CorrCHSH(β) non-trivial. By considering a superset of M(N3), i.e.,
LMCHSH(K), we can simplify CorrCHSH(β).
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