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Contingency Table

A contingency table is a type of table in a matrix format that displays

the multivariate frequency distribution of the variables.

Example of a 2× 2 contingency table

Suppose we have two categorical variables:

1. gender (male or female),

2. handedness (right or left handed).

Conduct a simple random sampling and obtain a size 100 data that is

summarized by the following table:

Right-hand Left-hand Total

Male 50 6 56

Female 40 4 44

Total 90 10 100



Contingency Table

Contingency tables are fundamental objects across the sciences including

1. statistics [FLL17]1,

2. combinatorics and graph theory [Bar09]2,

3. discrete geometry and combinatorial optimization [DK14]3,

4. algebraic and enumerative combinatorics [PP20]4.

1M. W. Fagerland, S. Lydersen and P. Laake, Statistical analysis of contingency

tables, CRC Press, 2017.
2A. Barvinok, “Asymptotic estimates for the number of contingency tables, integer

flows, and volumes of transportation polytopes,” Int. Math. Res. Notices, 2009.
3J. A. De Loera and E. D. Kim, “Combinatorics and geometry of transportation

polytopes: an update,” Discrete geometry and algebraic combinatorics, 2014
4I. Pak and G. “Panova, Bounds on Kronecker coefficients via contingency tables”,

Linear Algebra Appl., 2020.



Two-dimensional constrained coding

Why do we need constrained coding?

Answer from [MMH01]5:

▶ In most data recording systems and many data communication

systems, some sequences are more prone to error than others.

▶ In order to reduce the likelihood of error, we need to impose

constraints on the sequences that are allowed to be

recorded or transmitted.

▶ Given such constraints, it is then necessary to encode arbitrary user

sequences into sequences that satisfy the constraint.

5B. H. Marcus, R. M. Roth, and P H. Siegel, “An introduction to coding for

constrained systems,” Lecture notes, 2001.



Two-dimensional constrained coding

Why do we consider two-dimensional constrained coding?

Answer from [N+23]6:

1. In optical recording, e.g., recording data in a CD, the recording

device is a surface, and the recording data is in two dimensional.

2. In resistive memory technologies, the memory cell is a passive

two-terminal device that can be both read and written over a

simple crossbar structure.

3. These two models offer a huge density advantage, however, face new

reliability issues and introduce two-dimensional constraints.

6T. T. Nguyen, K. Cai, H. M. Kiah, K. A. S. Immink, and Y. M. Chee,

“Two-dimensional RC/SW constrained codes bounded weight and almost balanced

weight,” IEEE Trans. Inf. Theory, 2023.



Two-dimensional constrained coding

In this talk, we discuss two-dimensional constrained binary coding

where the constrains are specified by the column sum and the row sums.

An introductory example

Consider the set of all binary 3× 3 matrices.

We want to know the number of binary 3× 3 matrices with row sums and

column sums equaling two.

The following are example binary 3× 3 matrices:


1 0 0

0 0 1

0 0 1



1 1 0

0 1 1

1 0 1



1 0 1

0 1 1

1 1 0

 .



Two-dimensional constrained coding

An introductory example

Consider the set of all binary 3× 3 matrices.

We want to know the number of binary 3× 3 matrices with row sums and

column sums equaling two.

The following are example binary 3× 3 matrices:


1 0 0

0 0 1

0 0 1


︸ ︷︷ ︸

×

,


1 1 0

0 1 1

1 0 1


︸ ︷︷ ︸

,


1 0 1

0 1 1

1 1 0


︸ ︷︷ ︸

.

The number of such matrices is 3!.



Two-dimensional constrained coding

An introductory example
1 1 0

0 1 1

1 0 1

 ,


1 0 1

0 1 1

1 1 0

 .

▶ These binary matrices can be viewed as binary contingency tables of

size 3× 3 with row sums and column sums equaling two.

▶ The number of such binary contingency tables is 3!.

We focus on counting the number of binary contingency tables /

two-dimensional binary codes with prescribed row sums and column

sums.

This counting problem is non-trivial in general.



Two-dimensional constrained binary codes and

contingency tables

A great deal of effort is made to approximate the number of contingency

tables with prescribed row sums and column sums.

A variety of tools have been developed in different areas, such as

1. the traditional and probabilistic divide-and-conquer [DZ15+]7,

2. the Markov chain Monte Carlo (MCMC) algorithms [C+06]8,

3. approximation algorithms [B+10]9.

7S. DeSalvo and J. Y. Zhao, “Random sampling of contingency tables via probabilistic

divide-and-conquer,” Comput. Statist., 2020.
8M. Cryan, M. Dyer, L. A. Goldberg, M. Jerrum and R. Martin, “Rapidly mixing

Markov chains for sampling contingency tables with a constant number of rows,” SIAM J.

Comput., 2006.
9A. Barvinok, Z. Luria, A. Samorodnitsky and A. Yong, “An approximation algorithm

for counting contingency tables,” Random Structures Algorithms, 2010
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Setup

Definition

1. [n] ≜ {1, 2, . . . , n} for n ∈ Z≥1 and [m] ≜ {1, 2, . . . ,m} for m ∈ Z≥1.

2. x =
(
x(i , j)

)
i∈[n],j∈[m]

: a {0, 1}-valued matrix of size n ×m.

3. For the i-th row x(i , :), we introduce an integer ri and impose a

constraint on the row sum:

Xri =

x(i , :)

∣∣∣∣∣∣
∑
j∈[m]

x(i , j) = ri

 .

4. For the j-th column x(:, j), we introduce an integer cj and impose a

constraint on the column sum:

Xcj =

x(:, j)

∣∣∣∣∣∣
∑
i∈[n]

x(i , j) = cj

 .



Setup

Definition

5. The set of valid configurations is defined to be

C ≜

{
x ∈ {0, 1}n×n

∣∣∣∣∣ x(i , :) ∈ Xri , ∀i ∈ [n],

x(:, j) ∈ Xcj , ∀j ∈ [m]

}
,

the set of binary matrices such that the i-th row sum is ri

and the j-th column sum is cj .

6. We want to compute the number of the valid configurations |C|.
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Graphical-model-based approximation method

Main idea

1. Define a standard factor graph (S-FG) N whose partition function

equals

Z (N) = |C|.

2. Run the sum product algorithm (SPA), a.k.a. belief propagation

(BP), on the S-FG N to compute the Bethe approximation of |C|,
denoted by ZB(N).



Graphical-model-based approximation method

Example

Consider n = m = 3 and ri = cj = 2, i.e., x ∈ {0, 1}3×3.

The i-th row x(i , :) ∈ Xri and the j-th column x(:, j) ∈ Xcj , where

Xri = {(1, 1, 0), (0, 1, 1), (1, 0, 1)}, Xcj = {(1, 1, 0)T, (0, 1, 1)T, (1, 0, 1)T}.

1. The local functions:

fl,i
(
x(i , :)

)
≜

 1 if x(i , :) ∈ Xri

0 otherwise
, fr,j

(
x(:, j)

)
≜

 1 if x(:, j) ∈ Xcj

0 otherwise
.

2. The support of the local functions:

Xfl,i ≜
{
x(i , :) ∈ {0, 1}3

∣∣ fl,i(x(i , :)) > 0
}
= Xri ,

Xfr,j ≜
{
x(:, j) ∈ {0, 1}3

∣∣ fr,j(x(:, j)) > 0
}
= Xcj .



Graphical-model-based approximation method
3. The {0, 1}-valued global function:

g(x) ≜ fl,1
(
x(1, 1), x(1, 2), x(1, 3)

)
· fl,2

(
x(2, 1), x(2, 2), x(2, 3)

)
· · · fr,2

(
x(1, 2), x(2, 2), x(3, 2)

)
· fr,3

(
x(1, 3), x(2, 3), x(3, 3)

)
.

The previously defined set of valid

configurations is equal to the support

of the global function:

C =
{
x ∈ {0, 1}3×3

∣∣ g(x) > 0
}
.

4. The partition function:

Z (N) ≜
∑

x∈{0,1}3×3

g(x) = |C|.

(1, 1)

(1, 2)
(1, 3)

(2
, 1
)

(2, 2)

(2, 3)

(3
, 1
)

(3
, 2
)

(3, 3)

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3



Graphical-model-based approximation method

5. The Bethe approximation of the partition function, i.e., the Bethe

partition function, is defined to be

ZB(N) ≜ exp

(
− min

β∈L(N)
FB(β)

)
,

where FB is the Bethe free energy (BFE)

function,

where L(N) is the local marginal polytope

(LMP) (see, e.g.,[WJ08]10).

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3

6. Then we run the sum-product algorithm (SPA),

a.k.a. belief propagation (BP), on the S-FG N to get ZB(N).

10M. J. Wainwright and M. I. Jordan, “Graphical models, exponential families, and

variational inference,” Foundation and Trends in Machine Learning, 2008.
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Main results
1. The projection of the local marginal polytope on the edges in N

equals conv(C).
(For general S-FGs, this projection is a relaxation of conv(C), i.e.,
conv(C) is a strict subset of this projection.)

2. For the typical case where N has an SPA fixed point consisting of

positive-valued messages only,

the SPA finds the value of ZB(N) exponentially fast.

3. The BFE function has some convexity properties.

Comments
▶ A generalization of parts of the results in [Von13]11.

▶ Even though the S-FG has a non-trivial cyclic structure,

the SPA has a good performance.
11P. O. Vontobel, The Bethe permanent of a nonnegative matrix,” IEEE Trans. Inf.

Theory, 2013.



Main results

Comments

For the setup where n = m, ri = 1, and cj = 1, it holds that

▶ C = {x | x is a permutation matrix of size n-by-n}

▶ The projection of the LMP on the edges equals the set of doubly

stochastic matrices of size n-by-n.

Birkhoff–von Neumann theorem

The set of doubly stochastic matrices of size n-by-n is the convex hull of

the set of the permutation matrices of size n-by-n.

The main result that conv(C) equals the projection of the LMP on the

edges for our considered S-FG, can be viewed as a generalization.
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A more general setup

An example S-FG

Consider n = m = 3 and ri = cj = 2. Then

fl,i
(
x(i , :)

)
=

 1 if x(i , :) ∈ {(1, 1, 0), (0, 1, 1), (1, 0, 1)}

0 otherwise
,

which corresponds to a multi-affine homogeneous real stable (MAHRS)

polynomial w.r.t. the indeterminates in L ≜
(
L1, L2, L3

)
∈ C3:

pi (L) =
∑

x(i ,:)∈{0,1}3
fl,i

(
x(i , :)

)
·
∏
j∈[3]

(
Lj
)x(i ,j)

= L1 · L2 + L2 · L3 + L1 · L3.Remark

▶ For details of real stable polynomials, see, e.g.,

S. O. Gharan, “Course notes of polynomial paradigm in algorithm design,” 2020,

Lecture 3.



Consider a more general setup where each local function is defined

based on a (possibly different) MAHRS polynomial.

Do the previous results hold in this more general setup?

Yes!



An MAHRS Polynomials-based S-FG

The standard factor graph (S-FG) N consists of

1. edges: (1, 1), (1, 2), . . . , (3, 3);

2. Binary matrix

x ≜


x(1, 1) x(1, 2) x(1, 3)

x(2, 1) x(2, 2) x(2, 3)

x(3, 1) x(3, 2) x(3, 3)

.

3. Nonnegative-valued local functions

fl,1, . . . , fr,3;

(1, 1)

(1, 2)
(1, 3)

(2
, 1
)

(2, 2)

(2, 3)

(3
, 1
)

(3
, 2
)

(3, 3)

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3



An MAHRS Polynomials-based S-FG

6. The local function fl,i on the LHS

is defined to be the mapping:

{0, 1}3 → R≥0, x(i , :) 7→ fl,i
(
x(i , :)

)
such that it corresponds to

an MAHRS polynomial.

7. The support of fl,i :

Xfl,i ≜
{
x(i , :) ∈ {0, 1}3

∣∣ fl,i(x(i , :)) > 0
}
.

8. A similar idea in the definitions of fr,j and

Xfr,j on the RHS.

(1, 1)

(1, 2)
(1, 3)

(2
, 1
)

(2, 2)

(2, 3)

(3
, 1
)

(3
, 2
)

(3, 3)

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3



An MAHRS Polynomials-based S-FG
9. The nonnegative-valued global

function:

g(x) ≜ fl,1
(
x(1, :)

)
· fl,2

(
x(2, :)

)
· fl,3

(
x(3, :)

)
· fr,1

(
x(:, 1)

)
· fr,2

(
x(:, 2)

)
· fr,3

(
x(:, 3)

)
.

10. The set of valid configurations:

C ≜
{
x ∈ {0, 1}3×3

∣∣ g(x) > 0
}
,

which is also the support of the

global function.

11. The partition function:

Z (N) ≜
∑
x∈C

g(x).

(1, 1)

(1, 2)
(1, 3)

(2
, 1
)

(2, 2)

(2, 3)

(3
, 1
)

(3
, 2
)

(3, 3)

fl,1 fr,1

fl,2 fr,2

fl,3 fr,3
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Known results

Consider an S-FG N where each local function is defined based on a

(possibly different) MAHRS polynomial.

Remarks

▶ Exactly computing Z (N) is a #P-complete problem in general.

(#P-complete problem is the set of the counting problems

associated with the decision problems in the class NP.)

▶ Run the SPA to find the value of the Bethe partition function

ZB(N) that approximates Z (N).

▶ [Theorem 3.2, SV19]12: ZB(N) ≤ Z (N).

12D. Straszak and N. K. Vishnoi, “Belief propagation, Bethe approximation, and

polynomials,” IEEE Trans. Inf. Theory, 2019.



Known results

Consider an S-FG N where each local function is defined based on a

(possibly different) MAHRS polynomial.

Remarks

▶ Other real-stable-polynomial-based approximation of Z (N)

[Gur15]13 and [Bra23]14.

13L. Gurvits, “Boolean matrices with prescribed row/column sums and stable

homogeneous polynomials: Combinatorial and algorithmic applications,” Inform. and

Comput., 2015.
14P. Brändén, J. Leake, and I. Pak, “Lower bounds for contingency tables via

Lorentzian polynomials,” Israel J. Math., 2023.



Main results

Consider an S-FG N where each local function is defined based on a

(possibly different) MAHRS polynomial.

▶ The support Xfl,i on the LHS corresponds to

a set of bases of a matroid [Brä07]15.

▶ The support of the product of the local functions on the LHS is{
Xfl,1 ×Xfl,2 × · · · × Xfl,n

}
.

▶ Similarly for the local functions and the support on the RHS.

▶ The support of the global function equals the intersection of the

bases of matroids:

C =
{
Xfl,1 ×Xfl,2 × · · · × Xfl,n

}⋂{
Xfr,1 ×Xfr,2 × · · · × Xfr,m

}
15P. Brändén, “Polynomials with the half-plane property and matroid theory,” Adv.

Math., 2007.



Main results

1. The convex hull conv(C) is the projection of the LMP on the edges.

(Based on results on intersection of matroids (see, e.g., [Oxl11]16).)

2. For the typical case where the S-FG has an SPA fixed point consisting

of positive-valued messages only, the SPA finds the value of ZB(N)

exponentially fast.

(Based on the properties of real stable polynomials in [Brä07]17.)

16J. Oxley, Matroid Theory, Oxford University Press, 2011.
17P. Brändén, “Polynomials with the half-plane property and matroid theory,” Adv.

Math., 2007.



Main results

3. The Bethe free energy function FB has some convexity properties.

The proof of the convexity is new.

This result is based on the dual form of ZB(N) in the following two

papers:

▶ D. Straszak and N. K. Vishnoi, “Belief propagation, Bethe

approximation, and polynomials,” IEEE Trans. Inf. Theory, 2019.

▶ N. Anari and S. O. Gharan, “A generalization of permanent inequalities

and applications in counting and optimization,” Adv. Math., 2021.
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Numerical results

Setup

▶ We first consider the case n = m = 6

and ri = cj = 2.

▶ We independently randomly generate

3000 instances of N.
-4 -2 0 2 4 6

N

-6

-4

-2

0

2

4

6

N
N

Observation

▶ ZB(N) ≤ Z (N) ([Theorem 3.2, SV19]18).

▶ ZB(N) provides a good estimate of Z (N) in this case.

18D. Straszak and N. K. Vishnoi, “Belief propagation, Bethe approximation, and

polynomials,” IEEE Trans. Inf. Theory, 2019.



Numerical results

Setup

Consider the same setup as the previous

case, but with n = m = 6 replaced by

n = m = 7.

Observation

We can make similar observations.

0 2 4 6 8

N

-2

0

2

4

6

8

N
N
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Future work

▶ Consider a more general S-FG, where each local function corresponds

to a more general polynomial.

▶ Prove the convergence of the SPA for a more general S-FG.



Connection to other works

Works on polynomial approaches to approximate partition functions:

▶ L. Gurvits, “Unleashing the power of Schrijver’s permanental inequality with the

help of the Bethe approximation,” Elec. Coll. Comp. Compl., 2011.

▶ D. Straszak and N. K. Vishnoi, “Belief propagation, Bethe approximation, and

polynomials,” IEEE Trans. Inf. Theory, 2019.

▶ N. Anari and S. O. Gharan, “A generalization of permanent inequalities and

applications in counting and optimization,” Adv. Math., 2021.



Connection to other works

Works on the properties of real stable polynomials and the partition

functions.

▶ P. Brändén, “The Lee-Yang and Pólya-Schur programs. I. Linear operators

preserving stability,” Amer. J. Math., 2014.

▶ J. Borcea and P. Brändén, “The Lee-Yang and Pólya-Schur programs. II. Theory of

stable polynomials and applications,” Commun. Pure Appl. Math., 2009.

▶ J. Borcea, P. Brändén, and T. M. Liggett, “Negative dependence and the geometry

of polynomials,” J. Amer. Math. Soc., 2009.
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