On constrained coding and contingency tables

Yuwen Huang

Department of Information Engineering and Department of Computer Science and Engineering The Chinese University of Hong Kong yuwen.huang@ieee.org

A talk at School of Cyber Science and Engineering
Southeast University

Today's talk is based on a joint work with Professor Pascal O. Vontobel at CUHK:

Y. Huang, P. O. Vontobel, "The Bethe partition function and the SPA for factor graphs based on homogeneous real stable polynomials," 2024 IEEE International Symposium on Information Theory (ISIT), 3029-3034.

Motivation

A setup based on binary matrices with prescribed row sums and column sums

Graphical-model-based approximation method

Main results

A more general setup

Main results for a more general setup

Numerical results

Future works and connection to other works

▶ Motivation

A setup based on binary matrices with prescribed row sums and column sums

Graphical-model-based approximation method

Main results

A more general setup

Main results for a more general setup

Numerical results

Future works and connections to other works

Contingency Table

A contingency table is a type of table in a matrix format that displays the multivariate frequency distribution of the variables.

Example of a 2×2 contingency table

Suppose we have two categorical variables:

- 1. gender (male or female),
- 2. handedness (right or left handed).

Conduct a simple random sampling and obtain a size 100 data that is summarized by the following table:

	Right-hand	Left-hand	Total
Male	50	6	56
Female	40	4	44
Total	90	10	100

Contingency Table

Contingency tables are fundamental objects across the sciences including

- 1. statistics [FLL17]¹,
- 2. combinatorics and graph theory [Bar09]²,
- 3. discrete geometry and combinatorial optimization [DK14]³,
- 4. algebraic and enumerative combinatorics [PP20]⁴.

¹M. W. Fagerland, S. Lydersen and P. Laake, Statistical analysis of contingency tables, CRC Press, 2017.

²A. Barvinok, "Asymptotic estimates for the number of contingency tables, integer flows, and volumes of transportation polytopes," Int. Math. Res. Notices, 2009.

³J. A. De Loera and E. D. Kim, "Combinatorics and geometry of transportation polytopes: an update," Discrete geometry and algebraic combinatorics, 2014

 $^{^4}$ I. Pak and G. "Panova, Bounds on Kronecker coefficients via contingency tables",

Why do we need constrained coding?

Answer from [MMH01]⁵:

- ► In most data recording systems and many data communication systems, some sequences are more prone to error than others.
- In order to reduce the likelihood of error, we need to impose constraints on the sequences that are allowed to be recorded or transmitted.
- ► Given such constraints, it is then necessary to encode arbitrary user sequences into sequences that satisfy the constraint.

⁵B. H. Marcus, R. M. Roth, and P H. Siegel, "An introduction to coding for constrained systems," Lecture notes, 2001.

Why do we consider two-dimensional constrained coding?

Answer from $[N+23]^6$:

- In optical recording, e.g., recording data in a CD, the recording device is a surface, and the recording data is in two dimensional.
- In resistive memory technologies, the memory cell is a passive two-terminal device that can be both read and written over a simple crossbar structure.
- 3. These two models offer a huge density advantage, however, face new reliability issues and introduce two-dimensional constraints.

⁶T. T. Nguyen, K. Cai, H. M. Kiah, K. A. S. Immink, and Y. M. Chee, "Two-dimensional RC/SW constrained codes bounded weight and almost balanced weight," IEEE Trans. Inf. Theory, 2023.

In this talk, we discuss two-dimensional constrained binary coding where the constrains are specified by the column sum and the row sums.

An introductory example

Consider the set of all binary 3×3 matrices.

We want to know the number of binary 3×3 matrices with row sums and column sums equaling two.

The following are example binary 3×3 matrices:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

An introductory example

Consider the set of all binary 3×3 matrices.

We want to know the number of binary 3×3 matrices with row sums and column sums equaling two.

The following are example binary 3×3 matrices:

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}}_{\times}, \qquad \underbrace{\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}}_{\times}, \qquad \underbrace{\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}}_{\times}.$$

The number of such matrices is 3!.

An introductory example

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

- ► These binary matrices can be viewed as binary contingency tables of size 3 × 3 with row sums and column sums equaling two.
- ► The number of such binary contingency tables is 3!.

We focus on counting the number of binary contingency tables / two-dimensional binary codes with prescribed row sums and column sums.

This counting problem is **non-trivial** in general.

Two-dimensional constrained binary codes and contingency tables

A great deal of effort is made to approximate the number of contingency tables with prescribed row sums and column sums.

A variety of tools have been developed in different areas, such as

- 1. the traditional and probabilistic divide-and-conquer [DZ15+]⁷,
- 2. the Markov chain Monte Carlo (MCMC) algorithms [C+06]⁸,
- 3. approximation algorithms $[B+10]^9$.

⁹A. Barvinok, Z. Luria, A. Samorodnitsky and A. Yong, "An approximation algorithm for counting contingency tables," Random Structures Algorithms, 2010 ≥ → → ≥ → ○ ○

⁷S. DeSalvo and J. Y. Zhao, "Random sampling of contingency tables via probabilistic divide-and-conquer," Comput. Statist., 2020.

⁸M. Cryan, M. Dyer, L. A. Goldberg, M. Jerrum and R. Martin, "Rapidly mixing Markov chains for sampling contingency tables with a constant number of rows," SIAM J. Comput., 2006.

Motivation

► A setup based on binary matrices with prescribed row sums and column sums

Graphical-model-based approximation method

Main results

A more general setup

Main results for a more general setup

Numerical results

Future works and connection to other works

Setup

Definition

- 1. $[n] \triangleq \{1, 2, \dots, n\}$ for $n \in \mathbb{Z}_{\geq 1}$ and $[m] \triangleq \{1, 2, \dots, m\}$ for $m \in \mathbb{Z}_{\geq 1}$.
- **2.** $\mathbf{x} = (x(i,j))_{i \in [n], i \in [m]}$: a $\{0,1\}$ -valued matrix of size $n \times m$.
- 3. For the *i*-th row x(i,:), we introduce an integer r_i and impose a constraint on the row sum:

$$\mathcal{X}_{r_i} = \left\{ \mathbf{x}(i,:) \middle| \sum_{j \in [m]} \mathbf{x}(i,j) = r_i \right\}.$$

4. For the *j*-th column x(:,j), we introduce an integer c_j and impose a constraint on the column sum:

$$\mathcal{X}_{c_j} = \left\{ \mathbf{x}(:,j) \mid \sum_{i \in [n]} \mathbf{x}(i,j) = c_j \right\}.$$

Setup

Definition

5. The set of valid configurations is defined to be

$$C \triangleq \left\{ \boldsymbol{x} \in \{0,1\}^{n \times n} \middle| \begin{array}{c} \boldsymbol{x}(i,:) \in \mathcal{X}_{r_i}, \ \forall i \in [n], \\ \boldsymbol{x}(:,j) \in \mathcal{X}_{c_j}, \ \forall j \in [m] \end{array} \right\},$$

the set of binary matrices such that the *i*-th row sum is r_i and the *j*-th column sum is c_i .

6. We want to compute the number of the valid configurations $|\mathcal{C}|$.

Motivation

A setup based on binary matrices with prescribed row sums and column sums

► Graphical-model-based approximation method

Main results

A more general setup

Main results for a more general setup

Numerical results

Future works and connection to other works

Graphical-model-based approximation method Main idea

 Define a standard factor graph (S-FG) N whose partition function equals

$$Z(N) = |C|$$
.

2. Run the sum product algorithm (SPA), a.k.a. belief propagation (BP), on the S-FG N to compute the Bethe approximation of $|\mathcal{C}|$, denoted by $Z_B(N)$.

Graphical-model-based approximation method

Example

Consider n = m = 3 and $r_i = c_j = 2$, i.e., $\mathbf{x} \in \{0, 1\}^{3 \times 3}$.

The *i*-th row
$$\mathbf{x}(i,:) \in \mathcal{X}_{r_i}$$
 and the *j*-th column $\mathbf{x}(:,j) \in \mathcal{X}_{c_j}$, where $\mathcal{X}_{r_i} = \{(1,1,0),(0,1,1),(1,0,1)\}, \quad \mathcal{X}_{c_j} = \{(1,1,0)^\mathsf{T},(0,1,1)^\mathsf{T},(1,0,1)^\mathsf{T}\}.$

1. The local functions:

$$f_{\mathrm{l},i}ig(m{x}(i,:)ig) riangleq egin{dcases} 1 & ext{if } m{x}(i,:) \in \mathcal{X}_{r_i} \\ 0 & ext{otherwise} \end{cases}, \quad f_{\mathrm{r},j}ig(m{x}(:,j)ig) riangleq egin{dcases} 1 & ext{if } m{x}(:,j) \in \mathcal{X}_{c_j} \\ 0 & ext{otherwise} \end{cases}.$$

2. The support of the local functions:

$$\begin{split} \mathcal{X}_{f_{l,i}} &\triangleq \left\{ \boldsymbol{x}(i,:) \in \{0,1\}^3 \mid f_{l,i}(\boldsymbol{x}(i,:)) > 0 \right\} = \mathcal{X}_{r_i}, \\ \mathcal{X}_{f_{r,j}} &\triangleq \left\{ \boldsymbol{x}(:,j) \in \{0,1\}^3 \mid f_{r,j}(\boldsymbol{x}(:,j)) > 0 \right\} = \mathcal{X}_{c_j}. \end{split}$$

Graphical-model-based approximation method

3. The $\{0,1\}$ -valued global function:

$$g(\mathbf{x}) \triangleq f_{1,1}(x(1,1),x(1,2),x(1,3))$$

$$\cdot f_{1,2}(x(2,1),x(2,2),x(2,3))$$

$$\cdot \cdot \cdot f_{r,2}(x(1,2),x(2,2),x(3,2))$$

$$\cdot f_{r,3}(x(1,3),x(2,3),x(3,3)).$$

The previously defined set of valid configurations is equal to the support of the global function:

$$\mathcal{C} = \left\{ \boldsymbol{x} \in \{0, 1\}^{3 \times 3} \mid g(\boldsymbol{x}) > 0 \right\}.$$

4. The partition function:

$$Z(N) \triangleq \sum_{\mathbf{x} \in \{0,1\}^{3 \times 3}} g(\mathbf{x}) = |\mathcal{C}|.$$

Graphical-model-based approximation method

5. The Bethe approximation of the partition function, *i.e.*, the Bethe partition function, is defined to be

 $f_{1,2}$

 $f_{\rm r,2}$

$$\label{eq:ZB} Z_{\mathrm{B}}(\mathsf{N}) \triangleq \mathsf{exp}\bigg(\!\!\!\! - \!\!\!\! \min_{\beta \in \mathcal{L}(\mathsf{N})} F_{\mathrm{B}}(\beta)\bigg),$$

where $F_{\rm B}$ is the Bethe free energy (BFE) function.

where $\mathcal{L}(N)$ is the **local marginal polytope** (LMP) (see, *e.g.*,[WJ08]¹⁰).

¹⁰M. J. Wainwright and M. I. Jordan, "Graphical models, exponential families, and variational inference," Foundation and Trends in Machine Learning, 2008.

Motivation

A setup based on binary matrices with prescribed row sums and column sums

Graphical-model-based approximation method

► Main results

A more general setup

Main results for a more general setup

Numerical results

Future works and connection to other works

- 1. The projection of the local marginal polytope on the edges in N equals conv(C).
 - (For general S-FGs, this projection is a **relaxation** of conv(C), *i.e.*, conv(C) is a **strict subset** of this **projection**.)
- 2. For the typical case where N has an SPA fixed point consisting of positive-valued messages only, the SPA finds the value of $Z_B(N)$ exponentially fast.
- 3. The BFE function has some convexity properties.

Comments

- ► A generalization of parts of the results in [Von13]¹¹.
- ► Even though the S-FG has a non-trivial cyclic structure, the SPA has a good performance.
- ¹¹P. O. Vontobel, The Bethe permanent of a nonnegative matrix," IEEE Trans. Inf.

Comments

For the setup where n = m, $r_i = 1$, and $c_j = 1$, it holds that

- $ightharpoonup C = \{x \mid x \text{ is a permutation matrix of size } n\text{-by-}n\}$
- ► The projection of the LMP on the edges equals the set of doubly stochastic matrices of size *n*-by-*n*.

Birkhoff-von Neumann theorem

The set of doubly stochastic matrices of size n-by-n is the convex hull of the set of the permutation matrices of size n-by-n.

The main result that conv(C) equals the projection of the LMP on the edges for our considered S-FG, can be viewed as a generalization.

Motivation

A setup based on binary matrices with prescribed row sums and column sums

Graphical-model-based approximation method

Main results

► A more general setup

Main results for a more general setup

Numerical results

Future works and connection to other works

A more general setup

An example S-FG

Consider n = m = 3 and $r_i = c_j = 2$. Then

$$f_{\mathrm{l},i}ig(m{x}(i,:)ig) = \left\{egin{array}{ll} 1 & ext{if } m{x}(i,:) \in \{(1,1,0),(0,1,1),(1,0,1)\} \\ 0 & ext{otherwise} \end{array}
ight.$$

which corresponds to a multi-affine homogeneous real stable (MAHRS) polynomial w.r.t. the indeterminates in $\mathbf{L} \triangleq (L_1, L_2, L_3) \in \mathbb{C}^3$:

$$p_{i}(\mathbf{L}) = \sum_{\mathbf{x}(i,:) \in \{0,1\}^{3}} f_{1,i}(\mathbf{x}(i,:)) \cdot \prod_{j \in [3]} (L_{j})^{\mathbf{x}(i,j)}$$
$$= L_{1} \cdot L_{2} + L_{2} \cdot L_{3} + L_{1} \cdot L_{3}.$$

Remark

- For details of real stable polynomials, see, e.g.,
 - S. O. Gharan, "Course notes of polynomial paradigm in algorithm design," 2020,

Consider a more general setup where each local function is defined based on a (possibly different) MAHRS polynomial.

Do the previous results hold in this more general setup?

Yes!

An MAHRS Polynomials-based S-FG

The standard factor graph (S-FG) N consists of

- 1. edges: $(1,1),(1,2),\ldots,(3,3)$;
- 2. Binary matrix

$$\mathbf{x} \triangleq \left(\begin{array}{ccc} x(1,1) & x(1,2) & x(1,3) \\ x(2,1) & x(2,2) & x(2,3) \\ x(3,1) & x(3,2) & x(3,3) \end{array}\right).$$

3. Nonnegative-valued local functions $f_{1,1}, \ldots, f_{r,3}$;

An MAHRS Polynomials-based S-FG

6. The local function $f_{l,i}$ on the LHS is defined to be the mapping:

$$\{0,1\}^3 \to \mathbb{R}_{\geq 0}, \quad \boldsymbol{x}(i,:) \mapsto f_{1,i}(\boldsymbol{x}(i,:))$$

such that it corresponds to an MAHRS polynomial.

7. The support of $f_{l,i}$:

$$\mathcal{X}_{f_{l,i}} \triangleq \left\{ \boldsymbol{x}(i,:) \in \{0,1\}^3 \ \big| \ f_{l,i}\big(\boldsymbol{x}(i,:)\big) > 0 \right\}.$$

8. A similar idea in the definitions of $f_{r,j}$ and $\mathcal{X}_{f_{r,j}}$ on the RHS.

An MAHRS Polynomials-based S-FG

The nonnegative-valued global function:

$$g(\mathbf{x}) \triangleq f_{1,1}(\mathbf{x}(1,:)) \cdot f_{1,2}(\mathbf{x}(2,:))$$
$$\cdot f_{1,3}(\mathbf{x}(3,:)) \cdot f_{r,1}(\mathbf{x}(:,1))$$
$$\cdot f_{r,2}(\mathbf{x}(:,2)) \cdot f_{r,3}(\mathbf{x}(:,3)).$$

10. The set of valid configurations:

$$\mathcal{C} \triangleq \left\{ \boldsymbol{x} \in \{0,1\}^{3\times3} \mid g(\boldsymbol{x}) > 0 \right\},$$
 which is also the **support** of the **global function**.

11. The partition function:

$$Z(N) \triangleq \sum_{\mathbf{x} \in \mathcal{C}} g(\mathbf{x}).$$

Motivation

A setup based on binary matrices with prescribed row sums and column sums

Graphical-model-based approximation method

Main results

A more general setup

► Main results for a more general setup

Numerical results

Future works and connection to other works

Known results

Consider an S-FG N where each local function is defined based on a (possibly different) MAHRS polynomial.

Remarks

- ► Exactly computing Z(N) is a #P-complete problem in general. (#P-complete problem is the set of the counting problems associated with the decision problems in the class NP.)
- ► Run the SPA to find the value of the Bethe partition function Z_B(N) that approximates Z(N).
- ► [Theorem 3.2, SV19]¹²: $Z_B(N) \le Z(N)$.

¹²D. Straszak and N. K. Vishnoi, "Belief propagation, Bethe approximation, and polynomials," IEEE Trans. Inf. Theory, 2019.

Known results

Consider an S-FG N where each local function is defined based on a (possibly different) MAHRS polynomial.

Remarks

Other real-stable-polynomial-based approximation of Z(N)[Gur15]¹³ and [Bra23]¹⁴.

¹⁴P. Brändén, J. Leake, and I. Pak, "Lower bounds for contingency tables via Lorentzian polynomials," Israel J. Math., 2023.

¹³L. Gurvits. "Boolean matrices with prescribed row/column sums and stable homogeneous polynomials: Combinatorial and algorithmic applications," Inform. and Comput., 2015.

Consider an S-FG N where each local function is defined based on a (possibly different) MAHRS polynomial.

- ► The support $\mathcal{X}_{f_{l,i}}$ on the LHS corresponds to a set of bases of a matroid [Brä07]¹⁵.
- ▶ The support of the **product** of the **local functions** on the **LHS** is $\{\mathcal{X}_{f_{1,1}} \times \mathcal{X}_{f_{1,2}} \times \cdots \times \mathcal{X}_{f_{1,n}}\}.$
- Similarly for the local functions and the support on the RHS.
- ► The support of the global function equals the intersection of the bases of matroids:

$$\mathcal{C} = \left\{\mathcal{X}_{f_{1,1}} \times \mathcal{X}_{f_{1,2}} \times \dots \times \mathcal{X}_{f_{1,n}}\right\} \bigcap \left\{\mathcal{X}_{f_{r,1}} \times \mathcal{X}_{f_{r,2}} \times \dots \times \mathcal{X}_{f_{r,m}}\right\}$$

¹⁵P. Brändén, "Polynomials with the half-plane property and matroid theory," Adv.

- 1. The convex hull conv(C) is the projection of the LMP on the edges. (Based on results on intersection of matroids (see, e.g., $[Oxl11]^{16}$).)
- 2. For the typical case where the S-FG has an SPA fixed point consisting of positive-valued messages only, the SPA finds the value of $Z_{\rm B}(N)$ exponentially fast.
 - (Based on the properties of real stable polynomials in [Brä07]¹⁷.)

¹⁶J. Oxley, Matroid Theory, Oxford University Press, 2011.

¹⁷P. Brändén, "Polynomials with the half-plane property and matroid theory," Adv.

3. The Bethe free energy function $F_{\rm B}$ has some convexity properties.

The proof of the convexity is **new**.

This result is based on the **dual** form of $Z_B(N)$ in the following two papers:

- D. Straszak and N. K. Vishnoi, "Belief propagation, Bethe approximation, and polynomials," IEEE Trans. Inf. Theory, 2019.
- N. Anari and S. O. Gharan, "A generalization of permanent inequalities and applications in counting and optimization," Adv. Math., 2021.

Motivation

A setup based on binary matrices with prescribed row sums and column sums

Graphical-model-based approximation method

Main results

A more general setup

Main results for a more general setup

▶ Numerical results

Future works and connection to other works

Numerical results

Setup

- ▶ We first consider the case n = m = 6and $r_i = c_i = 2$.
- ► We independently randomly generate 3000 instances of N.

Observation

- ► $Z_{\rm B}(N) \le Z(N)$ ([Theorem 3.2, SV19]¹⁸).
- $ightharpoonup Z_{\rm B}(N)$ provides a **good estimate** of Z(N) in this case.

¹⁸D. Straszak and N. K. Vishnoi, "Belief propagation, Bethe approximation, and polynomials," IEEE Trans. Inf. Theory, 2019.

Numerical results

Setup

Consider the same setup as the previous case, but with n = m = 6 replaced by n = m = 7.

Observation

We can make similar observations.

Motivation

A setup based on binary matrices with prescribed row sums and column sums

Graphical-model-based approximation method

Main results

A more general setup

Main results for a more general setup

Numerical results

► Future works and connection to other works

Future work

Consider a more general S-FG, where each local function corresponds to a more general polynomial.

▶ Prove the convergence of the SPA for a more general S-FG.

Connection to other works

Works on polynomial approaches to approximate partition functions:

- ▶ L. Gurvits, "Unleashing the power of Schrijver's permanental inequality with the help of the Bethe approximation," Elec. Coll. Comp. Compl., 2011.
- D. Straszak and N. K. Vishnoi, "Belief propagation, Bethe approximation, and polynomials," IEEE Trans. Inf. Theory, 2019.
- N. Anari and S. O. Gharan, "A generalization of permanent inequalities and applications in counting and optimization," Adv. Math., 2021.

Connection to other works

Works on the properties of **real stable** polynomials and the **partition functions**.

- P. Brändén, "The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability," Amer. J. Math., 2014.
- ▶ J. Borcea and P. Brändén, "The Lee-Yang and Pólya-Schur programs. II. Theory of stable polynomials and applications," Commun. Pure Appl. Math., 2009.
- ▶ J. Borcea, P. Brändén, and T. M. Liggett, "Negative dependence and the geometry of polynomials," J. Amer. Math. Soc., 2009.

Thank you!

Yuwen Huang gratefully acknowledges useful discussions with Prof. Jonathan Leake from the University of Waterloo.